A monoid of Kostka–Foulkes polynomials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Pasquale Petrullo, Domenico Senato

ABSTRACT

We introduce the monoid of the admissible KF polynomials. These polynomials are invariant under uniform translation of partitions. Moreover, each Kostka–Foulkes polynomial turns out to be a linear combination of admissible KF polynomials with coefficients -1 or 1. Elementary manipulations of triangular matrices provide identities on Kostka–Foulkes polynomials which are not obvious a priori. More... »

PAGES

1-16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10801-019-00878-7

DOI

http://dx.doi.org/10.1007/s10801-019-00878-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113173823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Basilicata", 
          "id": "https://www.grid.ac/institutes/grid.7367.5", 
          "name": [
            "Dipartimento di Matematica, Informatica e Economia, Universit\u00e0 degli Studi della Basilicata, Via dell\u2019Ateneo Lucano 10, Potenza, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrullo", 
        "givenName": "Pasquale", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Basilicata", 
          "id": "https://www.grid.ac/institutes/grid.7367.5", 
          "name": [
            "Dipartimento di Matematica, Informatica e Economia, Universit\u00e0 degli Studi della Basilicata, Via dell\u2019Ateneo Lucano 10, Potenza, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senato", 
        "givenName": "Domenico", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0012-365x(92)90375-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008791885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107359970.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013409237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023678613", 
          "https://doi.org/10.1007/bf01389223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2016.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033433053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812810199_0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096075413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679946"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "We introduce the monoid of the admissible KF polynomials. These polynomials are invariant under uniform translation of partitions. Moreover, each Kostka\u2013Foulkes polynomial turns out to be a linear combination of admissible KF polynomials with coefficients -1 or 1. Elementary manipulations of triangular matrices provide identities on Kostka\u2013Foulkes polynomials which are not obvious a priori.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10801-019-00878-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136470", 
        "issn": [
          "0925-9899", 
          "1572-9192"
        ], 
        "name": "Journal of Algebraic Combinatorics", 
        "type": "Periodical"
      }
    ], 
    "name": "A monoid of Kostka\u2013Foulkes polynomials", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b072c9bd7f4681fc0df3c6ea3ddd129c2eed2498aa487b907e05eee4c4368ed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10801-019-00878-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113173823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10801-019-00878-7", 
      "https://app.dimensions.ai/details/publication/pub.1113173823"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10801-019-00878-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10801-019-00878-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10801-019-00878-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10801-019-00878-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10801-019-00878-7'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      21 PREDICATES      30 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10801-019-00878-7 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author N352ca84e79014f60a5f1991ae06a7c87
4 schema:citation sg:pub.10.1007/bf01389223
5 https://doi.org/10.1016/0012-365x(92)90375-p
6 https://doi.org/10.1016/j.ejc.2016.05.008
7 https://doi.org/10.1017/cbo9780511805967
8 https://doi.org/10.1017/cbo9781107359970.011
9 https://doi.org/10.1142/9789812810199_0006
10 schema:datePublished 2019-04-01
11 schema:datePublishedReg 2019-04-01
12 schema:description We introduce the monoid of the admissible KF polynomials. These polynomials are invariant under uniform translation of partitions. Moreover, each Kostka–Foulkes polynomial turns out to be a linear combination of admissible KF polynomials with coefficients -1 or 1. Elementary manipulations of triangular matrices provide identities on Kostka–Foulkes polynomials which are not obvious a priori.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf sg:journal.1136470
17 schema:name A monoid of Kostka–Foulkes polynomials
18 schema:pagination 1-16
19 schema:productId N5b9740a5b9464f29b2ca3dbd7da929a9
20 Nce0c903f0201453eaf33f9a76951789f
21 Nf382d53d4e014609a0ee6ccb473842b0
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113173823
23 https://doi.org/10.1007/s10801-019-00878-7
24 schema:sdDatePublished 2019-04-11T13:51
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N3e65191f67e0465ab94056ca02d5d656
27 schema:url https://link.springer.com/10.1007%2Fs10801-019-00878-7
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N352ca84e79014f60a5f1991ae06a7c87 rdf:first N4bffb376d8474f3794335712ee78e132
32 rdf:rest Nb89baac5f00e4d4d80c01e66f83c25ab
33 N3e65191f67e0465ab94056ca02d5d656 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N4bffb376d8474f3794335712ee78e132 schema:affiliation https://www.grid.ac/institutes/grid.7367.5
36 schema:familyName Petrullo
37 schema:givenName Pasquale
38 rdf:type schema:Person
39 N5b9740a5b9464f29b2ca3dbd7da929a9 schema:name doi
40 schema:value 10.1007/s10801-019-00878-7
41 rdf:type schema:PropertyValue
42 Nb89baac5f00e4d4d80c01e66f83c25ab rdf:first Ndbd8917845064e019cdf0dfed0b42025
43 rdf:rest rdf:nil
44 Nce0c903f0201453eaf33f9a76951789f schema:name readcube_id
45 schema:value 7b072c9bd7f4681fc0df3c6ea3ddd129c2eed2498aa487b907e05eee4c4368ed
46 rdf:type schema:PropertyValue
47 Ndbd8917845064e019cdf0dfed0b42025 schema:affiliation https://www.grid.ac/institutes/grid.7367.5
48 schema:familyName Senato
49 schema:givenName Domenico
50 rdf:type schema:Person
51 Nf382d53d4e014609a0ee6ccb473842b0 schema:name dimensions_id
52 schema:value pub.1113173823
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Physics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136470 schema:issn 0925-9899
61 1572-9192
62 schema:name Journal of Algebraic Combinatorics
63 rdf:type schema:Periodical
64 sg:pub.10.1007/bf01389223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023678613
65 https://doi.org/10.1007/bf01389223
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1016/0012-365x(92)90375-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1008791885
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/j.ejc.2016.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033433053
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1017/cbo9780511805967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679946
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1017/cbo9781107359970.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013409237
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1142/9789812810199_0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096075413
76 rdf:type schema:CreativeWork
77 https://www.grid.ac/institutes/grid.7367.5 schema:alternateName University of Basilicata
78 schema:name Dipartimento di Matematica, Informatica e Economia, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, Potenza, Italy
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...