Depth and regularity modulo a principal ideal View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-30

AUTHORS

Giulio Caviglia, Huy Tài Hà, Jürgen Herzog, Manoj Kummini, Naoki Terai, Ngo Viet Trung

ABSTRACT

We study the relationship between depth and regularity of a homogeneous ideal I and those of (I, f) and I : f, where f is a linear form or a monomial. Our results have several interesting consequences on depth and regularity of edge ideals of hypergraphs and of powers of ideals. More... »

PAGES

1-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10801-018-0811-9

DOI

http://dx.doi.org/10.1007/s10801-018-0811-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100721444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Purdue University, 150 N. University Street, 47907-2067, West Lafayette, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Department of Mathematics, Purdue University, 150 N. University Street, 47907-2067, West Lafayette, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caviglia", 
        "givenName": "Giulio", 
        "id": "sg:person.012234760031.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234760031.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Tulane University, 6823 St. Charles Ave., 70118, New Orleans, LA, USA", 
          "id": "http://www.grid.ac/institutes/grid.265219.b", 
          "name": [
            "Department of Mathematics, Tulane University, 6823 St. Charles Ave., 70118, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e0", 
        "givenName": "Huy T\u00e0i", 
        "id": "sg:person.013521212117.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521212117.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fachbereich 6, Mathematik, Universit\u00e4t Duisburg-Essen, Campus Essen, 45117, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich 6, Mathematik, Universit\u00e4t Duisburg-Essen, Campus Essen, 45117, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzog", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.015740254267.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015740254267.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chennai Mathematical Institute, 603103, Siruseri, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.444722.3", 
          "name": [
            "Chennai Mathematical Institute, 603103, Siruseri, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kummini", 
        "givenName": "Manoj", 
        "id": "sg:person.016301033743.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301033743.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Culture and Education, Saga University, 8408502, Saga, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Faculty of Culture and Education, Saga University, 8408502, Saga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terai", 
        "givenName": "Naoki", 
        "id": "sg:person.013722063261.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013722063261.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam", 
          "id": "http://www.grid.ac/institutes/grid.472707.1", 
          "name": [
            "Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trung", 
        "givenName": "Ngo Viet", 
        "id": "sg:person.016243367744.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243367744.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/pl00004668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013876325", 
          "https://doi.org/10.1007/pl00004668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10801-012-0391-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041697036", 
          "https://doi.org/10.1007/s10801-012-0391-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-106-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007114432", 
          "https://doi.org/10.1007/978-0-85729-106-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-015-1566-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048412185", 
          "https://doi.org/10.1007/s00209-015-1566-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40306-014-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025062698", 
          "https://doi.org/10.1007/s40306-014-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1001559912258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029292707", 
          "https://doi.org/10.1023/a:1001559912258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10801-009-0171-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046348120", 
          "https://doi.org/10.1007/s10801-009-0171-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13348-011-0045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012286542", 
          "https://doi.org/10.1007/s13348-011-0045-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10801-005-4528-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001450848", 
          "https://doi.org/10.1007/s10801-005-4528-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11512-013-0184-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036436842", 
          "https://doi.org/10.1007/s11512-013-0184-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5350-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041937578", 
          "https://doi.org/10.1007/978-1-4612-5350-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-30", 
    "datePublishedReg": "2018-01-30", 
    "description": "We study the relationship between depth and regularity of a homogeneous ideal I and those of (I,\u00a0f) and I\u00a0:\u00a0f, where f is a linear form or a monomial. Our results have several interesting consequences on depth and regularity of edge ideals of hypergraphs and of powers of ideals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10801-018-0811-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6142330", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7530074", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3027608", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136470", 
        "issn": [
          "0925-9899", 
          "1572-9192"
        ], 
        "name": "Journal of Algebraic Combinatorics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "ideal", 
      "powers of ideals", 
      "power", 
      "consequences", 
      "relationship", 
      "form", 
      "regularity", 
      "depth", 
      "results", 
      "interesting consequences", 
      "linear form", 
      "hypergraphs", 
      "monomials", 
      "principal ideals", 
      "homogeneous ideal I", 
      "ideal I", 
      "edge ideals", 
      "regularity modulo", 
      "modulo"
    ], 
    "name": "Depth and regularity modulo a principal ideal", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100721444"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10801-018-0811-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10801-018-0811-9", 
      "https://app.dimensions.ai/details/publication/pub.1100721444"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_769.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10801-018-0811-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10801-018-0811-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10801-018-0811-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10801-018-0811-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10801-018-0811-9'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      22 PREDICATES      55 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10801-018-0811-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1c7fab09c1d549d3ac5d040de007854d
4 schema:citation sg:pub.10.1007/978-0-85729-106-6
5 sg:pub.10.1007/978-1-4612-5350-1
6 sg:pub.10.1007/pl00004668
7 sg:pub.10.1007/s00209-015-1566-9
8 sg:pub.10.1007/s10801-005-4528-1
9 sg:pub.10.1007/s10801-009-0171-6
10 sg:pub.10.1007/s10801-012-0391-z
11 sg:pub.10.1007/s11512-013-0184-1
12 sg:pub.10.1007/s13348-011-0045-9
13 sg:pub.10.1007/s40306-014-0104-x
14 sg:pub.10.1023/a:1001559912258
15 schema:datePublished 2018-01-30
16 schema:datePublishedReg 2018-01-30
17 schema:description We study the relationship between depth and regularity of a homogeneous ideal I and those of (I, f) and I : f, where f is a linear form or a monomial. Our results have several interesting consequences on depth and regularity of edge ideals of hypergraphs and of powers of ideals.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N3ce8b3c2bd704d12a0b834095c78f370
22 Nff9f5b8aa54d4e05a97750e1dbcf26b7
23 sg:journal.1136470
24 schema:keywords consequences
25 depth
26 edge ideals
27 form
28 homogeneous ideal I
29 hypergraphs
30 ideal
31 ideal I
32 interesting consequences
33 linear form
34 modulo
35 monomials
36 power
37 powers of ideals
38 principal ideals
39 regularity
40 regularity modulo
41 relationship
42 results
43 schema:name Depth and regularity modulo a principal ideal
44 schema:pagination 1-20
45 schema:productId N0b7398066b1f48ddb735e924480a0b0d
46 N525d69fe51074d578636b55406cae097
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100721444
48 https://doi.org/10.1007/s10801-018-0811-9
49 schema:sdDatePublished 2021-12-01T19:40
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N2773ee592152408b894b4179daa977c9
52 schema:url https://doi.org/10.1007/s10801-018-0811-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0b7398066b1f48ddb735e924480a0b0d schema:name dimensions_id
57 schema:value pub.1100721444
58 rdf:type schema:PropertyValue
59 N1c7fab09c1d549d3ac5d040de007854d rdf:first sg:person.012234760031.16
60 rdf:rest Nb0b3b28c8c9a446a967a907d97804d25
61 N2773ee592152408b894b4179daa977c9 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N3ce8b3c2bd704d12a0b834095c78f370 schema:volumeNumber 49
64 rdf:type schema:PublicationVolume
65 N525d69fe51074d578636b55406cae097 schema:name doi
66 schema:value 10.1007/s10801-018-0811-9
67 rdf:type schema:PropertyValue
68 N54edced1fe5243df8fa202de19f00b41 rdf:first sg:person.016301033743.02
69 rdf:rest Nc87bee800f7042dd940a894bae92d494
70 Nb0b3b28c8c9a446a967a907d97804d25 rdf:first sg:person.013521212117.86
71 rdf:rest Nc9e2f04d907640f18a62bde8d620ca84
72 Nc87bee800f7042dd940a894bae92d494 rdf:first sg:person.013722063261.10
73 rdf:rest Ned3cf01e1c66453e9f9725343ad168a7
74 Nc9e2f04d907640f18a62bde8d620ca84 rdf:first sg:person.015740254267.60
75 rdf:rest N54edced1fe5243df8fa202de19f00b41
76 Ned3cf01e1c66453e9f9725343ad168a7 rdf:first sg:person.016243367744.60
77 rdf:rest rdf:nil
78 Nff9f5b8aa54d4e05a97750e1dbcf26b7 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:grant.3027608 http://pending.schema.org/fundedItem sg:pub.10.1007/s10801-018-0811-9
87 rdf:type schema:MonetaryGrant
88 sg:grant.6142330 http://pending.schema.org/fundedItem sg:pub.10.1007/s10801-018-0811-9
89 rdf:type schema:MonetaryGrant
90 sg:grant.7530074 http://pending.schema.org/fundedItem sg:pub.10.1007/s10801-018-0811-9
91 rdf:type schema:MonetaryGrant
92 sg:journal.1136470 schema:issn 0925-9899
93 1572-9192
94 schema:name Journal of Algebraic Combinatorics
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.012234760031.16 schema:affiliation grid-institutes:grid.169077.e
98 schema:familyName Caviglia
99 schema:givenName Giulio
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234760031.16
101 rdf:type schema:Person
102 sg:person.013521212117.86 schema:affiliation grid-institutes:grid.265219.b
103 schema:familyName
104 schema:givenName Huy Tài
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521212117.86
106 rdf:type schema:Person
107 sg:person.013722063261.10 schema:affiliation grid-institutes:grid.412339.e
108 schema:familyName Terai
109 schema:givenName Naoki
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013722063261.10
111 rdf:type schema:Person
112 sg:person.015740254267.60 schema:affiliation grid-institutes:grid.5718.b
113 schema:familyName Herzog
114 schema:givenName Jürgen
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015740254267.60
116 rdf:type schema:Person
117 sg:person.016243367744.60 schema:affiliation grid-institutes:grid.472707.1
118 schema:familyName Trung
119 schema:givenName Ngo Viet
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243367744.60
121 rdf:type schema:Person
122 sg:person.016301033743.02 schema:affiliation grid-institutes:grid.444722.3
123 schema:familyName Kummini
124 schema:givenName Manoj
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301033743.02
126 rdf:type schema:Person
127 sg:pub.10.1007/978-0-85729-106-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007114432
128 https://doi.org/10.1007/978-0-85729-106-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-1-4612-5350-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041937578
131 https://doi.org/10.1007/978-1-4612-5350-1
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/pl00004668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013876325
134 https://doi.org/10.1007/pl00004668
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00209-015-1566-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048412185
137 https://doi.org/10.1007/s00209-015-1566-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10801-005-4528-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001450848
140 https://doi.org/10.1007/s10801-005-4528-1
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10801-009-0171-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046348120
143 https://doi.org/10.1007/s10801-009-0171-6
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10801-012-0391-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041697036
146 https://doi.org/10.1007/s10801-012-0391-z
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11512-013-0184-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036436842
149 https://doi.org/10.1007/s11512-013-0184-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s13348-011-0045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286542
152 https://doi.org/10.1007/s13348-011-0045-9
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s40306-014-0104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025062698
155 https://doi.org/10.1007/s40306-014-0104-x
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/a:1001559912258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029292707
158 https://doi.org/10.1023/a:1001559912258
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.169077.e schema:alternateName Department of Mathematics, Purdue University, 150 N. University Street, 47907-2067, West Lafayette, IN, USA
161 schema:name Department of Mathematics, Purdue University, 150 N. University Street, 47907-2067, West Lafayette, IN, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.265219.b schema:alternateName Department of Mathematics, Tulane University, 6823 St. Charles Ave., 70118, New Orleans, LA, USA
164 schema:name Department of Mathematics, Tulane University, 6823 St. Charles Ave., 70118, New Orleans, LA, USA
165 rdf:type schema:Organization
166 grid-institutes:grid.412339.e schema:alternateName Faculty of Culture and Education, Saga University, 8408502, Saga, Japan
167 schema:name Faculty of Culture and Education, Saga University, 8408502, Saga, Japan
168 rdf:type schema:Organization
169 grid-institutes:grid.444722.3 schema:alternateName Chennai Mathematical Institute, 603103, Siruseri, Tamilnadu, India
170 schema:name Chennai Mathematical Institute, 603103, Siruseri, Tamilnadu, India
171 rdf:type schema:Organization
172 grid-institutes:grid.472707.1 schema:alternateName Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
173 schema:name Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
174 rdf:type schema:Organization
175 grid-institutes:grid.5718.b schema:alternateName Fachbereich 6, Mathematik, Universität Duisburg-Essen, Campus Essen, 45117, Essen, Germany
176 schema:name Fachbereich 6, Mathematik, Universität Duisburg-Essen, Campus Essen, 45117, Essen, Germany
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...