Kakeya-type sets in finite vector spaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-29

AUTHORS

Swastik Kopparty, Vsevolod F. Lev, Shubhangi Saraf, Madhu Sudan

ABSTRACT

For a finite vector space V and a nonnegative integer r≤dim V, we estimate the smallest possible size of a subset of V, containing a translate of every r-dimensional subspace. In particular, we show that if K⊆V is the smallest subset with this property, n denotes the dimension of V, and q is the size of the underlying field, then for r bounded and r More... »

PAGES

337-355

References to SciGraph publications

  • 2009-11. Discrete Kakeya-type problems and small bases in ISRAEL JOURNAL OF MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10801-011-0274-8

    DOI

    http://dx.doi.org/10.1007/s10801-011-0274-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006637975


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopparty", 
            "givenName": "Swastik", 
            "id": "sg:person.014276170447.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014276170447.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, The University of Haifa at Oranim, 36006, Tivon, Israel", 
              "id": "http://www.grid.ac/institutes/grid.18098.38", 
              "name": [
                "Department of Mathematics, The University of Haifa at Oranim, 36006, Tivon, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lev", 
            "givenName": "Vsevolod F.", 
            "id": "sg:person.012273306235.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012273306235.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, 02139, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saraf", 
            "givenName": "Shubhangi", 
            "id": "sg:person.015177766032.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177766032.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microsoft Research, One Memorial Drive, 02142, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Microsoft Research, One Memorial Drive, 02142, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sudan", 
            "givenName": "Madhu", 
            "id": "sg:person.014663420265.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014663420265.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11856-009-0115-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033753892", 
              "https://doi.org/10.1007/s11856-009-0115-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-29", 
        "datePublishedReg": "2011-01-29", 
        "description": "For a finite vector space V and a nonnegative integer r\u2264dim\u2009V, we estimate the smallest possible size of a subset of V, containing a translate of every r-dimensional subspace. In particular, we show that if K\u2286V is the smallest subset with this property, n denotes the dimension of V, and q is the size of the underlying field, then for r bounded and r
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10801-011-0274-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10801-011-0274-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10801-011-0274-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10801-011-0274-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      22 PREDICATES      48 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10801-011-0274-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N11a8e9b3b03f4c38bced32d454af21b2
    4 schema:citation sg:pub.10.1007/s11856-009-0115-9
    5 schema:datePublished 2011-01-29
    6 schema:datePublishedReg 2011-01-29
    7 schema:description For a finite vector space V and a nonnegative integer r≤dim V, we estimate the smallest possible size of a subset of V, containing a translate of every r-dimensional subspace. In particular, we show that if K⊆V is the smallest subset with this property, n denotes the dimension of V, and q is the size of the underlying field, then for r bounded and r<n≤rqr−1, we have |V∖K|=Θ(nqn−r+1); this improves the previously known bounds |V∖K|=Ω(qn−r+1) and |V∖K|=O(n2qn−r+1).
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N9d31acb5bf6e4c828a82943a53c8cfad
    12 Nda1cdefb9d564cfaa97450350e77ed6f
    13 sg:journal.1136470
    14 schema:keywords Kakeya-type sets
    15 bounds
    16 dimensional subspace
    17 dimensions
    18 field
    19 finite vector space V
    20 finite vector spaces
    21 integers
    22 nonnegative integers
    23 possible size
    24 properties
    25 set
    26 size
    27 small subset
    28 smallest possible size
    29 space
    30 space V
    31 subset
    32 subspace
    33 translates
    34 vector space
    35 vector space V
    36 schema:name Kakeya-type sets in finite vector spaces
    37 schema:pagination 337-355
    38 schema:productId N1381058c33ae4637b76a7782ac39a85a
    39 N889d15409a12488c92e9ac61d19de64f
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006637975
    41 https://doi.org/10.1007/s10801-011-0274-8
    42 schema:sdDatePublished 2022-01-01T18:24
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nf2e3f402c4dc4ef397295b5050060238
    45 schema:url https://doi.org/10.1007/s10801-011-0274-8
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N10b3c1a922c142a189a0fbcbf5f34aa9 rdf:first sg:person.015177766032.20
    50 rdf:rest Nb44be3299af54cba9c73818c9b29486b
    51 N11a8e9b3b03f4c38bced32d454af21b2 rdf:first sg:person.014276170447.16
    52 rdf:rest Nc21f8f9886364c0b8e4100fdf403e420
    53 N1381058c33ae4637b76a7782ac39a85a schema:name dimensions_id
    54 schema:value pub.1006637975
    55 rdf:type schema:PropertyValue
    56 N889d15409a12488c92e9ac61d19de64f schema:name doi
    57 schema:value 10.1007/s10801-011-0274-8
    58 rdf:type schema:PropertyValue
    59 N9d31acb5bf6e4c828a82943a53c8cfad schema:volumeNumber 34
    60 rdf:type schema:PublicationVolume
    61 Nb44be3299af54cba9c73818c9b29486b rdf:first sg:person.014663420265.17
    62 rdf:rest rdf:nil
    63 Nc21f8f9886364c0b8e4100fdf403e420 rdf:first sg:person.012273306235.76
    64 rdf:rest N10b3c1a922c142a189a0fbcbf5f34aa9
    65 Nda1cdefb9d564cfaa97450350e77ed6f schema:issueNumber 3
    66 rdf:type schema:PublicationIssue
    67 Nf2e3f402c4dc4ef397295b5050060238 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136470 schema:issn 0925-9899
    76 1572-9192
    77 schema:name Journal of Algebraic Combinatorics
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.012273306235.76 schema:affiliation grid-institutes:grid.18098.38
    81 schema:familyName Lev
    82 schema:givenName Vsevolod F.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012273306235.76
    84 rdf:type schema:Person
    85 sg:person.014276170447.16 schema:affiliation grid-institutes:grid.116068.8
    86 schema:familyName Kopparty
    87 schema:givenName Swastik
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014276170447.16
    89 rdf:type schema:Person
    90 sg:person.014663420265.17 schema:affiliation grid-institutes:None
    91 schema:familyName Sudan
    92 schema:givenName Madhu
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014663420265.17
    94 rdf:type schema:Person
    95 sg:person.015177766032.20 schema:affiliation grid-institutes:grid.116068.8
    96 schema:familyName Saraf
    97 schema:givenName Shubhangi
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177766032.20
    99 rdf:type schema:Person
    100 sg:pub.10.1007/s11856-009-0115-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033753892
    101 https://doi.org/10.1007/s11856-009-0115-9
    102 rdf:type schema:CreativeWork
    103 grid-institutes:None schema:alternateName Microsoft Research, One Memorial Drive, 02142, Cambridge, MA, USA
    104 schema:name Microsoft Research, One Memorial Drive, 02142, Cambridge, MA, USA
    105 rdf:type schema:Organization
    106 grid-institutes:grid.116068.8 schema:alternateName Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, 02139, Cambridge, MA, USA
    107 schema:name Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar Street, 02139, Cambridge, MA, USA
    108 rdf:type schema:Organization
    109 grid-institutes:grid.18098.38 schema:alternateName Department of Mathematics, The University of Haifa at Oranim, 36006, Tivon, Israel
    110 schema:name Department of Mathematics, The University of Haifa at Oranim, 36006, Tivon, Israel
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...