Canonical bases of higher-level q-deformed Fock spaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-11

AUTHORS

Xavier Yvonne

ABSTRACT

We show that the transition matrices between the standard and the canonical bases of infinitely many weight subspaces of the higher-level q-deformed Fock spaces are equal.

PAGES

383-414

References to SciGraph publications

  • 1998-11. Cyclotomic q–Schur algebras in MATHEMATISCHE ZEITSCHRIFT
  • 1991-03. Combinatorics of representations of atq=0 in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995-03. Decomposition ofq-deformed Fock spaces in SELECTA MATHEMATICA
  • 1990-11. Crystal base for the basic representation of in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1996-11. Hecke algebras at roots of unity and crystal bases of quantum affine algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1990-01. Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000. Canonical Bases of Higher-Level q-Deformed Fock Spaces and Kazhdan-Lusztig Polynomials in PHYSICAL COMBINATORICS
  • Journal

    TITLE

    Journal of Algebraic Combinatorics

    ISSUE

    3

    VOLUME

    26

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10801-007-0062-7

    DOI

    http://dx.doi.org/10.1007/s10801-007-0062-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037663993


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Claude Bernard University Lyon 1", 
              "id": "https://www.grid.ac/institutes/grid.7849.2", 
              "name": [
                "Institut Camille Jordan (Math\u00e9matiques), Universit\u00e9 Lyon I, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yvonne", 
            "givenName": "Xavier", 
            "id": "sg:person.010130633112.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130633112.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0021-8693(91)90319-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013018065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02102090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013580086", 
              "https://doi.org/10.1007/bf02102090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02102090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013580086", 
              "https://doi.org/10.1007/bf02102090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1998.1783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018704387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00004665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019642778", 
              "https://doi.org/10.1007/pl00004665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2006.03.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023754001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1378-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024102660", 
              "https://doi.org/10.1007/978-1-4612-1378-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1378-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024102660", 
              "https://doi.org/10.1007/978-1-4612-1378-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2006.10.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029075150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033468114", 
              "https://doi.org/10.1007/bf02101678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033468114", 
              "https://doi.org/10.1007/bf02101678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035092413", 
              "https://doi.org/10.1007/bf02096497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035092413", 
              "https://doi.org/10.1007/bf02096497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036679522", 
              "https://doi.org/10.1007/bf02099073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036679522", 
              "https://doi.org/10.1007/bf02099073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01587910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037987101", 
              "https://doi.org/10.1007/bf01587910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jabr.2000.8690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046909933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-93-06920-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-93-07131-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-99-10010-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064420561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250281696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083508492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250518452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083508901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511626234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098791356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/aspm/02810155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106266307"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-11", 
        "datePublishedReg": "2007-11-01", 
        "description": "We show that the transition matrices between the standard and the canonical bases of infinitely many weight subspaces of the higher-level q-deformed Fock spaces are equal.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10801-007-0062-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136470", 
            "issn": [
              "0925-9899", 
              "1572-9192"
            ], 
            "name": "Journal of Algebraic Combinatorics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Canonical bases of higher-level q-deformed Fock spaces", 
        "pagination": "383-414", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b36b71fb35433a6f0c668b5763ebe99227da624e87faca051836ba0f93d9597f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10801-007-0062-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037663993"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10801-007-0062-7", 
          "https://app.dimensions.ai/details/publication/pub.1037663993"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71695_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10801-007-0062-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10801-007-0062-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10801-007-0062-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10801-007-0062-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10801-007-0062-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      20 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10801-007-0062-7 schema:author Nce4caed79e474161bd3bf19a31a0f955
    2 schema:citation sg:pub.10.1007/978-1-4612-1378-9_8
    3 sg:pub.10.1007/bf01587910
    4 sg:pub.10.1007/bf02096497
    5 sg:pub.10.1007/bf02099073
    6 sg:pub.10.1007/bf02101678
    7 sg:pub.10.1007/bf02102090
    8 sg:pub.10.1007/pl00004665
    9 https://doi.org/10.1006/aima.1998.1783
    10 https://doi.org/10.1006/jabr.2000.8690
    11 https://doi.org/10.1016/0021-8693(91)90319-4
    12 https://doi.org/10.1016/j.jalgebra.2006.03.048
    13 https://doi.org/10.1016/j.jalgebra.2006.10.014
    14 https://doi.org/10.1017/cbo9780511626234
    15 https://doi.org/10.1215/kjm/1250281696
    16 https://doi.org/10.1215/kjm/1250518452
    17 https://doi.org/10.1215/s0012-7094-93-06920-7
    18 https://doi.org/10.1215/s0012-7094-93-07131-1
    19 https://doi.org/10.1215/s0012-7094-99-10010-x
    20 https://doi.org/10.2969/aspm/02810155
    21 schema:datePublished 2007-11
    22 schema:datePublishedReg 2007-11-01
    23 schema:description We show that the transition matrices between the standard and the canonical bases of infinitely many weight subspaces of the higher-level q-deformed Fock spaces are equal.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N1e4dec74c68d4217a31b2359835adf96
    28 N46e9ad62e4ad4bed9f912f4f3e7b0577
    29 sg:journal.1136470
    30 schema:name Canonical bases of higher-level q-deformed Fock spaces
    31 schema:pagination 383-414
    32 schema:productId N578e378ec6c04c84b12410e268c165f3
    33 N710846146c0947699a1bb104b74272b1
    34 N76fc79574e0d40c38298aa269ca64e0f
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037663993
    36 https://doi.org/10.1007/s10801-007-0062-7
    37 schema:sdDatePublished 2019-04-11T12:59
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N102cba203c294774b66aa982d0a4ee30
    40 schema:url https://link.springer.com/10.1007%2Fs10801-007-0062-7
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N102cba203c294774b66aa982d0a4ee30 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N1e4dec74c68d4217a31b2359835adf96 schema:volumeNumber 26
    47 rdf:type schema:PublicationVolume
    48 N46e9ad62e4ad4bed9f912f4f3e7b0577 schema:issueNumber 3
    49 rdf:type schema:PublicationIssue
    50 N578e378ec6c04c84b12410e268c165f3 schema:name doi
    51 schema:value 10.1007/s10801-007-0062-7
    52 rdf:type schema:PropertyValue
    53 N710846146c0947699a1bb104b74272b1 schema:name dimensions_id
    54 schema:value pub.1037663993
    55 rdf:type schema:PropertyValue
    56 N76fc79574e0d40c38298aa269ca64e0f schema:name readcube_id
    57 schema:value b36b71fb35433a6f0c668b5763ebe99227da624e87faca051836ba0f93d9597f
    58 rdf:type schema:PropertyValue
    59 Nce4caed79e474161bd3bf19a31a0f955 rdf:first sg:person.010130633112.75
    60 rdf:rest rdf:nil
    61 sg:journal.1136470 schema:issn 0925-9899
    62 1572-9192
    63 schema:name Journal of Algebraic Combinatorics
    64 rdf:type schema:Periodical
    65 sg:person.010130633112.75 schema:affiliation https://www.grid.ac/institutes/grid.7849.2
    66 schema:familyName Yvonne
    67 schema:givenName Xavier
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130633112.75
    69 rdf:type schema:Person
    70 sg:pub.10.1007/978-1-4612-1378-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024102660
    71 https://doi.org/10.1007/978-1-4612-1378-9_8
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf01587910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037987101
    74 https://doi.org/10.1007/bf01587910
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf02096497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035092413
    77 https://doi.org/10.1007/bf02096497
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02099073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036679522
    80 https://doi.org/10.1007/bf02099073
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02101678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033468114
    83 https://doi.org/10.1007/bf02101678
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02102090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013580086
    86 https://doi.org/10.1007/bf02102090
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/pl00004665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019642778
    89 https://doi.org/10.1007/pl00004665
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1006/aima.1998.1783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018704387
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1006/jabr.2000.8690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909933
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0021-8693(91)90319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013018065
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.jalgebra.2006.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023754001
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.jalgebra.2006.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029075150
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1017/cbo9780511626234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098791356
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1215/kjm/1250281696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083508492
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1215/kjm/1250518452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083508901
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1215/s0012-7094-93-06920-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419839
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1215/s0012-7094-93-07131-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419896
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1215/s0012-7094-99-10010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420561
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.2969/aspm/02810155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106266307
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.7849.2 schema:alternateName Claude Bernard University Lyon 1
    116 schema:name Institut Camille Jordan (Mathématiques), Université Lyon I, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...