High surface area mesoporous BiZnSbV-G-SiO2 -based electrochemical biosensor for quantitative and rapid detection of microalbuminuria View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-27

AUTHORS

Kamrun Nahar Fatema, Chang Sung Lim, Won-Chun Oh

ABSTRACT

In this work, we synthesized a mesoporous BiZnSbV-G-SiO2 electrode-based sensor to detect microalbumin in urine, due to graphene based sensor system has a high electrocatalytic movement, electrical conductivity, abundance, and low cost. The synergistic effects of BiZnSbV-G-SiO2 nanocomposites advanced the electrochemical reaction and the affectability of the sensor. The synthesized active materials were characterized with surface morphology techniques, electron behavior controlling spectroscopy and electrochemical performance instrument, individually. Especially, chronoamperometric electrochemical evaluation system was used for the quantitative detection of microalbumin. We did electrochemical evaluations with a few possible compounds that regularly appear in urine (ascorbic acid, uric acid, glucose), which showed the good sensitivity and selectivity for the microalbumin detection. Under ideal conditions, the sensor can distinguish urinary microalbumin in a wide straight run from 0.01 to 0.1 μl with a location constraint of 0.01 μl. The excellent sensing performance of the mesoporous BiZnSbV-G-SiO2 active material was confirmed by analyzing microalbumin obtained from urine. The biosensor proposed here is specified in terms of simplification, low-cost, quick response, and precise screening for the microalbuminuria detection. This approach gives a promising stage for creating clinical point-of-care demonstrative applications. Additionally, the manufactured sensor had good selectivity, great reproducibility, great soundness, and good recuperation, which showed potential for applications in the clinical field.Graphic abstract More... »

PAGES

1345-1360

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10800-021-01576-8

DOI

http://dx.doi.org/10.1007/s10800-021-01576-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138399556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea", 
          "id": "http://www.grid.ac/institutes/grid.411977.d", 
          "name": [
            "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fatema", 
        "givenName": "Kamrun Nahar", 
        "id": "sg:person.013155647717.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155647717.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea", 
          "id": "http://www.grid.ac/institutes/grid.411977.d", 
          "name": [
            "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chang Sung", 
        "id": "sg:person.011270466123.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440648.a", 
          "name": [
            "Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea", 
            "Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Won-Chun", 
        "id": "sg:person.015032760145.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2017.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084348860", 
          "https://doi.org/10.1557/jmr.2017.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-017-2498-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091601864", 
          "https://doi.org/10.1007/s00604-017-2498-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1039/d0pp00295j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1133379255", 
          "https://doi.org/10.1039/d0pp00295j"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784822", 
          "https://doi.org/10.1038/nature08140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0202-171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043320364", 
          "https://doi.org/10.1038/nbt0202-171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/am.2015.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009270157", 
          "https://doi.org/10.1038/am.2015.63"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-27", 
    "datePublishedReg": "2021-05-27", 
    "description": "In this work, we synthesized a mesoporous BiZnSbV-G-SiO2 electrode-based sensor to detect microalbumin in urine, due to graphene based sensor system has a high electrocatalytic movement, electrical conductivity, abundance, and low cost. The synergistic effects of BiZnSbV-G-SiO2 nanocomposites advanced the electrochemical reaction and the affectability of the sensor. The synthesized active materials were characterized with surface morphology techniques, electron behavior controlling spectroscopy and electrochemical performance instrument, individually. Especially, chronoamperometric electrochemical evaluation system was used for the quantitative detection of microalbumin. We did electrochemical evaluations with a few possible compounds that regularly appear in urine (ascorbic acid, uric acid, glucose), which showed the good sensitivity and selectivity for the microalbumin detection. Under ideal conditions, the sensor can distinguish urinary microalbumin in a wide straight run from 0.01 to 0.1\u00a0\u03bcl with a location constraint of 0.01\u00a0\u03bcl. The excellent sensing performance of the mesoporous BiZnSbV-G-SiO2 active material was confirmed by analyzing microalbumin obtained from urine. The biosensor proposed here is specified in terms of simplification, low-cost, quick response, and precise screening for the microalbuminuria detection. This approach gives a promising stage for creating clinical point-of-care demonstrative applications. Additionally, the manufactured sensor had good selectivity, great reproducibility, great soundness, and good recuperation, which showed potential for applications in the clinical field.Graphic abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10800-021-01576-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049623", 
        "issn": [
          "0021-891X", 
          "1572-8838"
        ], 
        "name": "Journal of Applied Electrochemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "electrode-based sensors", 
      "active material", 
      "surface morphology techniques", 
      "electrochemical biosensor", 
      "SiO2 nanocomposites", 
      "quantitative detection", 
      "rapid detection", 
      "good selectivity", 
      "electrochemical evaluation", 
      "sensor system", 
      "low cost", 
      "biosensor", 
      "electrical conductivity", 
      "electrochemical reactions", 
      "sensors", 
      "good sensitivity", 
      "synergistic effect", 
      "terms of simplification", 
      "microalbuminuria detection", 
      "greater reproducibility", 
      "demonstrative application", 
      "graphene", 
      "nanocomposites", 
      "detection", 
      "quick response", 
      "straight run", 
      "selectivity", 
      "applications", 
      "electron behavior", 
      "ideal conditions", 
      "materials", 
      "better recuperation", 
      "clinical field", 
      "spectroscopy", 
      "promising stage", 
      "location constraints", 
      "conductivity", 
      "morphology techniques", 
      "reproducibility", 
      "performance", 
      "system", 
      "affectability", 
      "sensitivity", 
      "technique", 
      "simplification", 
      "urine", 
      "cost", 
      "potential", 
      "evaluation system", 
      "behavior", 
      "recuperation", 
      "field", 
      "possible compounds", 
      "conditions", 
      "work", 
      "reaction", 
      "constraints", 
      "run", 
      "point", 
      "approach", 
      "terms", 
      "effect", 
      "compounds", 
      "evaluation", 
      "clinical point", 
      "instrument", 
      "stage", 
      "soundness", 
      "movement", 
      "Performance Instrument", 
      "microalbumin", 
      "response", 
      "abundance", 
      "urinary microalbumin", 
      "microalbuminuria", 
      "mesoporous BiZnSbV", 
      "BiZnSbV", 
      "SiO2 electrode-based sensor", 
      "high electrocatalytic movement", 
      "electrocatalytic movement", 
      "synthesized active materials", 
      "electrochemical performance instrument", 
      "chronoamperometric electrochemical evaluation system", 
      "electrochemical evaluation system", 
      "microalbumin detection", 
      "wide straight run", 
      "SiO2 active material", 
      "care demonstrative applications", 
      "great soundness", 
      "Graphic abstract High surface area mesoporous BiZnSbV", 
      "abstract High surface area mesoporous BiZnSbV", 
      "High surface area mesoporous BiZnSbV", 
      "surface area mesoporous BiZnSbV", 
      "area mesoporous BiZnSbV", 
      "SiO2 -based electrochemical biosensor", 
      "-based electrochemical biosensor"
    ], 
    "name": "High surface area mesoporous BiZnSbV-G-SiO2 -based electrochemical biosensor for quantitative and rapid detection of microalbuminuria", 
    "pagination": "1345-1360", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138399556"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10800-021-01576-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10800-021-01576-8", 
      "https://app.dimensions.ai/details/publication/pub.1138399556"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_874.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10800-021-01576-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10800-021-01576-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10800-021-01576-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10800-021-01576-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10800-021-01576-8'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      129 URIs      113 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10800-021-01576-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N5477b6fb25494767b4c9cd5cfde1e32e
6 schema:citation sg:pub.10.1007/s00604-017-2498-3
7 sg:pub.10.1038/am.2015.63
8 sg:pub.10.1038/nature08140
9 sg:pub.10.1038/nbt0202-171
10 sg:pub.10.1039/d0pp00295j
11 sg:pub.10.1557/jmr.2017.91
12 schema:datePublished 2021-05-27
13 schema:datePublishedReg 2021-05-27
14 schema:description In this work, we synthesized a mesoporous BiZnSbV-G-SiO2 electrode-based sensor to detect microalbumin in urine, due to graphene based sensor system has a high electrocatalytic movement, electrical conductivity, abundance, and low cost. The synergistic effects of BiZnSbV-G-SiO2 nanocomposites advanced the electrochemical reaction and the affectability of the sensor. The synthesized active materials were characterized with surface morphology techniques, electron behavior controlling spectroscopy and electrochemical performance instrument, individually. Especially, chronoamperometric electrochemical evaluation system was used for the quantitative detection of microalbumin. We did electrochemical evaluations with a few possible compounds that regularly appear in urine (ascorbic acid, uric acid, glucose), which showed the good sensitivity and selectivity for the microalbumin detection. Under ideal conditions, the sensor can distinguish urinary microalbumin in a wide straight run from 0.01 to 0.1 μl with a location constraint of 0.01 μl. The excellent sensing performance of the mesoporous BiZnSbV-G-SiO2 active material was confirmed by analyzing microalbumin obtained from urine. The biosensor proposed here is specified in terms of simplification, low-cost, quick response, and precise screening for the microalbuminuria detection. This approach gives a promising stage for creating clinical point-of-care demonstrative applications. Additionally, the manufactured sensor had good selectivity, great reproducibility, great soundness, and good recuperation, which showed potential for applications in the clinical field.Graphic abstract
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N02420e1f79d34466aa57ace5d8d830d7
19 N1a053fb02d8e4fa7a00fb6646012276f
20 sg:journal.1049623
21 schema:keywords -based electrochemical biosensor
22 BiZnSbV
23 Graphic abstract High surface area mesoporous BiZnSbV
24 High surface area mesoporous BiZnSbV
25 Performance Instrument
26 SiO2 -based electrochemical biosensor
27 SiO2 active material
28 SiO2 electrode-based sensor
29 SiO2 nanocomposites
30 abstract High surface area mesoporous BiZnSbV
31 abundance
32 active material
33 affectability
34 applications
35 approach
36 area mesoporous BiZnSbV
37 behavior
38 better recuperation
39 biosensor
40 care demonstrative applications
41 chronoamperometric electrochemical evaluation system
42 clinical field
43 clinical point
44 compounds
45 conditions
46 conductivity
47 constraints
48 cost
49 demonstrative application
50 detection
51 effect
52 electrical conductivity
53 electrocatalytic movement
54 electrochemical biosensor
55 electrochemical evaluation
56 electrochemical evaluation system
57 electrochemical performance instrument
58 electrochemical reactions
59 electrode-based sensors
60 electron behavior
61 evaluation
62 evaluation system
63 field
64 good selectivity
65 good sensitivity
66 graphene
67 great soundness
68 greater reproducibility
69 high electrocatalytic movement
70 ideal conditions
71 instrument
72 location constraints
73 low cost
74 materials
75 mesoporous BiZnSbV
76 microalbumin
77 microalbumin detection
78 microalbuminuria
79 microalbuminuria detection
80 morphology techniques
81 movement
82 nanocomposites
83 performance
84 point
85 possible compounds
86 potential
87 promising stage
88 quantitative detection
89 quick response
90 rapid detection
91 reaction
92 recuperation
93 reproducibility
94 response
95 run
96 selectivity
97 sensitivity
98 sensor system
99 sensors
100 simplification
101 soundness
102 spectroscopy
103 stage
104 straight run
105 surface area mesoporous BiZnSbV
106 surface morphology techniques
107 synergistic effect
108 synthesized active materials
109 system
110 technique
111 terms
112 terms of simplification
113 urinary microalbumin
114 urine
115 wide straight run
116 work
117 schema:name High surface area mesoporous BiZnSbV-G-SiO2 -based electrochemical biosensor for quantitative and rapid detection of microalbuminuria
118 schema:pagination 1345-1360
119 schema:productId N494654a80673425baafbe37777c4514a
120 N54b0a5984fcc4f56ae9b957806d7d7c9
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138399556
122 https://doi.org/10.1007/s10800-021-01576-8
123 schema:sdDatePublished 2022-01-01T19:00
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher N31a9de252b5f4087898286bb70e396b4
126 schema:url https://doi.org/10.1007/s10800-021-01576-8
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N02420e1f79d34466aa57ace5d8d830d7 schema:issueNumber 9
131 rdf:type schema:PublicationIssue
132 N1a053fb02d8e4fa7a00fb6646012276f schema:volumeNumber 51
133 rdf:type schema:PublicationVolume
134 N31a9de252b5f4087898286bb70e396b4 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N494654a80673425baafbe37777c4514a schema:name dimensions_id
137 schema:value pub.1138399556
138 rdf:type schema:PropertyValue
139 N51d5844ac3d844bba86bed55b92a2e2c rdf:first sg:person.015032760145.10
140 rdf:rest rdf:nil
141 N5477b6fb25494767b4c9cd5cfde1e32e rdf:first sg:person.013155647717.98
142 rdf:rest Ne4accc51895b45028ddcdbe53d212e87
143 N54b0a5984fcc4f56ae9b957806d7d7c9 schema:name doi
144 schema:value 10.1007/s10800-021-01576-8
145 rdf:type schema:PropertyValue
146 Ne4accc51895b45028ddcdbe53d212e87 rdf:first sg:person.011270466123.07
147 rdf:rest N51d5844ac3d844bba86bed55b92a2e2c
148 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
149 schema:name Chemical Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
152 schema:name Physical Chemistry (incl. Structural)
153 rdf:type schema:DefinedTerm
154 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
155 schema:name Engineering
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
158 schema:name Materials Engineering
159 rdf:type schema:DefinedTerm
160 sg:journal.1049623 schema:issn 0021-891X
161 1572-8838
162 schema:name Journal of Applied Electrochemistry
163 schema:publisher Springer Nature
164 rdf:type schema:Periodical
165 sg:person.011270466123.07 schema:affiliation grid-institutes:grid.411977.d
166 schema:familyName Lim
167 schema:givenName Chang Sung
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270466123.07
169 rdf:type schema:Person
170 sg:person.013155647717.98 schema:affiliation grid-institutes:grid.411977.d
171 schema:familyName Fatema
172 schema:givenName Kamrun Nahar
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155647717.98
174 rdf:type schema:Person
175 sg:person.015032760145.10 schema:affiliation grid-institutes:grid.440648.a
176 schema:familyName Oh
177 schema:givenName Won-Chun
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015032760145.10
179 rdf:type schema:Person
180 sg:pub.10.1007/s00604-017-2498-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091601864
181 https://doi.org/10.1007/s00604-017-2498-3
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/am.2015.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009270157
184 https://doi.org/10.1038/am.2015.63
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature08140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784822
187 https://doi.org/10.1038/nature08140
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nbt0202-171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043320364
190 https://doi.org/10.1038/nbt0202-171
191 rdf:type schema:CreativeWork
192 sg:pub.10.1039/d0pp00295j schema:sameAs https://app.dimensions.ai/details/publication/pub.1133379255
193 https://doi.org/10.1039/d0pp00295j
194 rdf:type schema:CreativeWork
195 sg:pub.10.1557/jmr.2017.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084348860
196 https://doi.org/10.1557/jmr.2017.91
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.411977.d schema:alternateName Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea
199 schema:name Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea
200 rdf:type schema:Organization
201 grid-institutes:grid.440648.a schema:alternateName Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China
202 schema:name Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, 232001, Huainan, People’s Republic of China
203 Department of Advanced Materials Science & Engineering, Hanseo University, 356-706, Seosan-si, Chungnam, Korea
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...