CGO-based electrochemical catalysts for low temperature combustion of propene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-06-12

AUTHORS

R. Karoum, V. Roche, C. Pirovano, Rose-Noelle Vannier, A. Billard, P. Vernoux

ABSTRACT

This study has shown that the phenomenon of electrochemical promotion of catalysis or NEMCA effect can be used to activate a metal catalyst for the propene deep oxidation in the presence of water in the feed and in both stoichiometric and lean-burn conditions. The electrochemical catalysts were based on sputtered Pt films interfaced with gadolinium-doped ceria solid electrolyte. This system allows implementing NEMCA effect at quite low temperatures and electrochemical activation of propene deep oxidation was evidenced at temperatures as low as 190 °C. In addition, a new design of electrochemical catalysts was proposed by depositing a interlayer of strontium-doped lanthanum manganite between the CGO dense support and an ultra-thin coating of Pt. This concept allows to drastically decrease the Pt loading since the electronic conductivity is ensured by the perovskite layer. More... »

PAGES

1867-1873

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10800-010-0156-0

DOI

http://dx.doi.org/10.1007/s10800-010-0156-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043439685


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d\u2019Etudes et Recherches sur les Mat\u00e9riaux, les Proc\u00e9d\u00e9s et les Surfaces, Universit\u00e9 de Technologie de Belfort-Montb\u00e9liard, Site de Montb\u00e9liard, 90010, Belfort, France", 
          "id": "http://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "Institut de Recherches sur la Catalyse et l\u2019Environnement de Lyon, IRCELYON, Universit\u00e9 Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France", 
            "Laboratoire d\u2019Etudes et Recherches sur les Mat\u00e9riaux, les Proc\u00e9d\u00e9s et les Surfaces, Universit\u00e9 de Technologie de Belfort-Montb\u00e9liard, Site de Montb\u00e9liard, 90010, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karoum", 
        "givenName": "R.", 
        "id": "sg:person.015736672107.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736672107.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Recherches sur la Catalyse et l\u2019Environnement de Lyon, IRCELYON, Universit\u00e9 Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France", 
          "id": "http://www.grid.ac/institutes/grid.462054.1", 
          "name": [
            "Institut de Recherches sur la Catalyse et l\u2019Environnement de Lyon, IRCELYON, Universit\u00e9 Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roche", 
        "givenName": "V.", 
        "id": "sg:person.012615602227.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615602227.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 de Catalyse et de Chimie du Solide, UMR CNRS 8181, Ecole Nationale Sup\u00e9rieure de Chimie de Lille, 59652, Villeneuve d\u2019Ascq, France", 
          "id": "http://www.grid.ac/institutes/grid.424455.6", 
          "name": [
            "Unit\u00e9 de Catalyse et de Chimie du Solide, UMR CNRS 8181, Ecole Nationale Sup\u00e9rieure de Chimie de Lille, 59652, Villeneuve d\u2019Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pirovano", 
        "givenName": "C.", 
        "id": "sg:person.01050464416.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050464416.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 de Catalyse et de Chimie du Solide, UMR CNRS 8181, Ecole Nationale Sup\u00e9rieure de Chimie de Lille, 59652, Villeneuve d\u2019Ascq, France", 
          "id": "http://www.grid.ac/institutes/grid.424455.6", 
          "name": [
            "Unit\u00e9 de Catalyse et de Chimie du Solide, UMR CNRS 8181, Ecole Nationale Sup\u00e9rieure de Chimie de Lille, 59652, Villeneuve d\u2019Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vannier", 
        "givenName": "Rose-Noelle", 
        "id": "sg:person.013473562375.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473562375.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d\u2019Etudes et Recherches sur les Mat\u00e9riaux, les Proc\u00e9d\u00e9s et les Surfaces, Universit\u00e9 de Technologie de Belfort-Montb\u00e9liard, Site de Montb\u00e9liard, 90010, Belfort, France", 
          "id": "http://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "Laboratoire d\u2019Etudes et Recherches sur les Mat\u00e9riaux, les Proc\u00e9d\u00e9s et les Surfaces, Universit\u00e9 de Technologie de Belfort-Montb\u00e9liard, Site de Montb\u00e9liard, 90010, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Billard", 
        "givenName": "A.", 
        "id": "sg:person.011076177127.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076177127.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Recherches sur la Catalyse et l\u2019Environnement de Lyon, IRCELYON, Universit\u00e9 Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France", 
          "id": "http://www.grid.ac/institutes/grid.462054.1", 
          "name": [
            "Institut de Recherches sur la Catalyse et l\u2019Environnement de Lyon, IRCELYON, Universit\u00e9 Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vernoux", 
        "givenName": "P.", 
        "id": "sg:person.012573126231.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573126231.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11244-006-0129-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008469520", 
          "https://doi.org/10.1007/s11244-006-0129-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10800-008-9559-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009852559", 
          "https://doi.org/10.1007/s10800-008-9559-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11244-006-0127-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036271296", 
          "https://doi.org/10.1007/s11244-006-0127-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10800-008-9538-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004744079", 
          "https://doi.org/10.1007/s10800-008-9538-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/343625a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033845541", 
          "https://doi.org/10.1038/343625a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06-12", 
    "datePublishedReg": "2010-06-12", 
    "description": "This study has shown that the phenomenon of electrochemical promotion of catalysis or NEMCA effect can be used to activate a metal catalyst for the propene deep oxidation in the presence of water in the feed and in both stoichiometric and lean-burn conditions. The electrochemical catalysts were based on sputtered Pt films interfaced with gadolinium-doped ceria solid electrolyte. This system allows implementing NEMCA effect at quite low temperatures and electrochemical activation of propene deep oxidation was evidenced at temperatures as low as 190\u00a0\u00b0C. In addition, a new design of electrochemical catalysts was proposed by depositing a interlayer of strontium-doped lanthanum manganite between the CGO dense support and an ultra-thin coating of Pt. This concept allows to drastically decrease the Pt loading since the electronic conductivity is ensured by the perovskite layer.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10800-010-0156-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049623", 
        "issn": [
          "0021-891X", 
          "1572-8838"
        ], 
        "name": "Journal of Applied Electrochemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "propene deep oxidation", 
      "electrochemical catalysts", 
      "NEMCA effect", 
      "deep oxidation", 
      "strontium-doped lanthanum manganite", 
      "gadolinium-doped ceria", 
      "ultra-thin coatings", 
      "lean-burn conditions", 
      "presence of water", 
      "metal catalysts", 
      "electrochemical promotion", 
      "electrochemical activation", 
      "electronic conductivity", 
      "Pt loading", 
      "catalyst", 
      "lanthanum manganite", 
      "perovskite layer", 
      "Pt films", 
      "oxidation", 
      "low temperatures", 
      "low temperature combustion", 
      "temperature combustion", 
      "dense support", 
      "ceria", 
      "propene", 
      "catalysis", 
      "CGO", 
      "coatings", 
      "Pt", 
      "temperature", 
      "films", 
      "interlayer", 
      "manganites", 
      "conductivity", 
      "water", 
      "combustion", 
      "layer", 
      "loading", 
      "presence", 
      "addition", 
      "effect", 
      "conditions", 
      "feed", 
      "new design", 
      "phenomenon", 
      "system", 
      "support", 
      "study", 
      "design", 
      "activation", 
      "promotion", 
      "concept", 
      "CGO dense support"
    ], 
    "name": "CGO-based electrochemical catalysts for low temperature combustion of propene", 
    "pagination": "1867-1873", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043439685"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10800-010-0156-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10800-010-0156-0", 
      "https://app.dimensions.ai/details/publication/pub.1043439685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10800-010-0156-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10800-010-0156-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10800-010-0156-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10800-010-0156-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10800-010-0156-0'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      22 PREDICATES      83 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10800-010-0156-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N18602a0c5ee64163a16e1ec1622af001
4 schema:citation sg:pub.10.1007/s10800-008-9538-y
5 sg:pub.10.1007/s10800-008-9559-6
6 sg:pub.10.1007/s11244-006-0127-1
7 sg:pub.10.1007/s11244-006-0129-z
8 sg:pub.10.1038/343625a0
9 schema:datePublished 2010-06-12
10 schema:datePublishedReg 2010-06-12
11 schema:description This study has shown that the phenomenon of electrochemical promotion of catalysis or NEMCA effect can be used to activate a metal catalyst for the propene deep oxidation in the presence of water in the feed and in both stoichiometric and lean-burn conditions. The electrochemical catalysts were based on sputtered Pt films interfaced with gadolinium-doped ceria solid electrolyte. This system allows implementing NEMCA effect at quite low temperatures and electrochemical activation of propene deep oxidation was evidenced at temperatures as low as 190 °C. In addition, a new design of electrochemical catalysts was proposed by depositing a interlayer of strontium-doped lanthanum manganite between the CGO dense support and an ultra-thin coating of Pt. This concept allows to drastically decrease the Pt loading since the electronic conductivity is ensured by the perovskite layer.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N27c342f89b3340b298e1dde5f76fa6e0
16 Nbb3e93937a95425b98bcf24b49561b28
17 sg:journal.1049623
18 schema:keywords CGO
19 CGO dense support
20 NEMCA effect
21 Pt
22 Pt films
23 Pt loading
24 activation
25 addition
26 catalysis
27 catalyst
28 ceria
29 coatings
30 combustion
31 concept
32 conditions
33 conductivity
34 deep oxidation
35 dense support
36 design
37 effect
38 electrochemical activation
39 electrochemical catalysts
40 electrochemical promotion
41 electronic conductivity
42 feed
43 films
44 gadolinium-doped ceria
45 interlayer
46 lanthanum manganite
47 layer
48 lean-burn conditions
49 loading
50 low temperature combustion
51 low temperatures
52 manganites
53 metal catalysts
54 new design
55 oxidation
56 perovskite layer
57 phenomenon
58 presence
59 presence of water
60 promotion
61 propene
62 propene deep oxidation
63 strontium-doped lanthanum manganite
64 study
65 support
66 system
67 temperature
68 temperature combustion
69 ultra-thin coatings
70 water
71 schema:name CGO-based electrochemical catalysts for low temperature combustion of propene
72 schema:pagination 1867-1873
73 schema:productId Nab0ec3d433ec44a5967038d3ba2ec9a6
74 Nfd8b4f0962dc48c5ae3f4af1347119e5
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043439685
76 https://doi.org/10.1007/s10800-010-0156-0
77 schema:sdDatePublished 2021-12-01T19:24
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N36e22498fd4940258bc3205e315aef21
80 schema:url https://doi.org/10.1007/s10800-010-0156-0
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N18602a0c5ee64163a16e1ec1622af001 rdf:first sg:person.015736672107.22
85 rdf:rest Nc8fc97f2eac9491888e4505075a5879d
86 N26269b18d59b40b3b779209e3c3ca4db rdf:first sg:person.012573126231.54
87 rdf:rest rdf:nil
88 N27c342f89b3340b298e1dde5f76fa6e0 schema:issueNumber 10
89 rdf:type schema:PublicationIssue
90 N36e22498fd4940258bc3205e315aef21 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nab0ec3d433ec44a5967038d3ba2ec9a6 schema:name doi
93 schema:value 10.1007/s10800-010-0156-0
94 rdf:type schema:PropertyValue
95 Nbb3e93937a95425b98bcf24b49561b28 schema:volumeNumber 40
96 rdf:type schema:PublicationVolume
97 Nc39da1e70c8d4bcfbcc429bca6d7b3a7 rdf:first sg:person.011076177127.50
98 rdf:rest N26269b18d59b40b3b779209e3c3ca4db
99 Nc8fc97f2eac9491888e4505075a5879d rdf:first sg:person.012615602227.70
100 rdf:rest Ne7836ac1957243c18db8c4046465dae5
101 Nd3f6164bb2aa44a5affe82e87741ac94 rdf:first sg:person.013473562375.57
102 rdf:rest Nc39da1e70c8d4bcfbcc429bca6d7b3a7
103 Ne7836ac1957243c18db8c4046465dae5 rdf:first sg:person.01050464416.19
104 rdf:rest Nd3f6164bb2aa44a5affe82e87741ac94
105 Nfd8b4f0962dc48c5ae3f4af1347119e5 schema:name dimensions_id
106 schema:value pub.1043439685
107 rdf:type schema:PropertyValue
108 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Chemistry (incl. Structural)
113 rdf:type schema:DefinedTerm
114 sg:journal.1049623 schema:issn 0021-891X
115 1572-8838
116 schema:name Journal of Applied Electrochemistry
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01050464416.19 schema:affiliation grid-institutes:grid.424455.6
120 schema:familyName Pirovano
121 schema:givenName C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050464416.19
123 rdf:type schema:Person
124 sg:person.011076177127.50 schema:affiliation grid-institutes:grid.23082.3b
125 schema:familyName Billard
126 schema:givenName A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076177127.50
128 rdf:type schema:Person
129 sg:person.012573126231.54 schema:affiliation grid-institutes:grid.462054.1
130 schema:familyName Vernoux
131 schema:givenName P.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573126231.54
133 rdf:type schema:Person
134 sg:person.012615602227.70 schema:affiliation grid-institutes:grid.462054.1
135 schema:familyName Roche
136 schema:givenName V.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615602227.70
138 rdf:type schema:Person
139 sg:person.013473562375.57 schema:affiliation grid-institutes:grid.424455.6
140 schema:familyName Vannier
141 schema:givenName Rose-Noelle
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473562375.57
143 rdf:type schema:Person
144 sg:person.015736672107.22 schema:affiliation grid-institutes:grid.23082.3b
145 schema:familyName Karoum
146 schema:givenName R.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736672107.22
148 rdf:type schema:Person
149 sg:pub.10.1007/s10800-008-9538-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004744079
150 https://doi.org/10.1007/s10800-008-9538-y
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10800-008-9559-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009852559
153 https://doi.org/10.1007/s10800-008-9559-6
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11244-006-0127-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036271296
156 https://doi.org/10.1007/s11244-006-0127-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11244-006-0129-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008469520
159 https://doi.org/10.1007/s11244-006-0129-z
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/343625a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033845541
162 https://doi.org/10.1038/343625a0
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.23082.3b schema:alternateName Laboratoire d’Etudes et Recherches sur les Matériaux, les Procédés et les Surfaces, Université de Technologie de Belfort-Montbéliard, Site de Montbéliard, 90010, Belfort, France
165 schema:name Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, Université Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France
166 Laboratoire d’Etudes et Recherches sur les Matériaux, les Procédés et les Surfaces, Université de Technologie de Belfort-Montbéliard, Site de Montbéliard, 90010, Belfort, France
167 rdf:type schema:Organization
168 grid-institutes:grid.424455.6 schema:alternateName Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, 59652, Villeneuve d’Ascq, France
169 schema:name Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, 59652, Villeneuve d’Ascq, France
170 rdf:type schema:Organization
171 grid-institutes:grid.462054.1 schema:alternateName Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, Université Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France
172 schema:name Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, Université Lyon 1, CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne, France
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...