Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-05

AUTHORS

Amir Hassan Zadeh, Hamed M. Zolbanin, Ramesh Sharda, Dursun Delen

ABSTRACT

Contagious diseases pose significant challenges to public healthcare systems all over the world. The rise in emerging contagious and infectious diseases has led to calls for the use of new techniques and technologies capable of detecting, tracking, mapping and managing behavioral patterns in such diseases. In this study, we used Big Data technologies to analyze two sets of flu (influenza) activity data: Twitter data were used to extract behavioral patterns from a location-based social network and to monitor flu outbreaks (and their locations) in the US, and Cerner HealthFacts data warehouse was used to track real-world clinical encounters. We expected that the integration (mashing) of social media and real-world clinical encounters could be a valuable enhancement to the existing surveillance systems. Our results verified that flu-related traffic on social media is closely related with actual flu outbreaks. However, rather than using simple Pearson correlation, which assumes a zero lag between the online and real-world activities, we used a multi-method data analytics approach to obtain the spatio-temporal cross-correlation between the two flu trends and to explain behavioral patterns during the flu season. We found that clinical flu encounters lag behind online posts. Also, we identified several public locations from which a majority of posts initiated. These findings can help health authorities develop more effective interventions (behavioral and/or otherwise) during the outbreaks to reduce the spread and impact, and to inform individuals about the locations they should avoid during those periods. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10796-018-9893-0

DOI

http://dx.doi.org/10.1007/s10796-018-9893-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111161399


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wright State University", 
          "id": "https://www.grid.ac/institutes/grid.268333.f", 
          "name": [
            "Department of Information Systems and Supply Chain Management, Raj Soin College of Business, Wright State University, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassan Zadeh", 
        "givenName": "Amir", 
        "id": "sg:person.012346260523.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346260523.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ball State University", 
          "id": "https://www.grid.ac/institutes/grid.252754.3", 
          "name": [
            "Department of Information Systems and Operations Management, Miller College of Business, Ball State University, Muncie, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zolbanin", 
        "givenName": "Hamed M.", 
        "id": "sg:person.011476723623.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476723623.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oklahoma State University", 
          "id": "https://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Department of Management Science and Information Systems, Spears School of Business, Oklahoma State University, Stillwater, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharda", 
        "givenName": "Ramesh", 
        "id": "sg:person.014471260323.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014471260323.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oklahoma State University", 
          "id": "https://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Department of Management Science and Information Systems, Spears School of Business, Oklahoma State University, Stillwater, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delen", 
        "givenName": "Dursun", 
        "id": "sg:person.012251205050.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012251205050.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0083672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004129176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005138990", 
          "https://doi.org/10.1038/nature07634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15230406.2015.1059251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013064639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2016.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013206875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223432", 
          "https://doi.org/10.1038/srep12760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2014.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014176907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-014-9507-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017968657", 
          "https://doi.org/10.1007/s10796-014-9507-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seps.2014.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021543504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-9-483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022513738", 
          "https://doi.org/10.1186/1471-2458-9-483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2016.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022832775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ypmed.2014.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024839249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025057633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025198930", 
          "https://doi.org/10.1038/srep25732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280214527385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026925146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280214527385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026925146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/jmir.3532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029778857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1989734.1989742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030180319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2012.11.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034513949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034823586", 
          "https://doi.org/10.1038/nature06958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0157734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035830576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035977431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0126158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036415066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00365087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036915876", 
          "https://doi.org/10.1007/bf00365087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0064156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037008868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039368905", 
          "https://doi.org/10.1038/srep08154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vaccine.2007.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039888663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(13)70244-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044441546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11760146_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048376507", 
          "https://doi.org/10.1007/11760146_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11760146_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048376507", 
          "https://doi.org/10.1007/11760146_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048731563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.1090215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049420510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.1090215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049420510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049659864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1539-6924.2010.01529.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051446627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0043611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052949382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0125158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053516114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/a231025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058153101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/a231025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058153101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2012.713876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/222355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058541853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/228313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058547811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/37.1-2.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/infdis/jiw376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059710337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1248506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1460458215599822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064003639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1460458215599822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064003639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/isre.1110.0376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064711527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/jmir.5086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069286402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2332142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069893800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003335491412900603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078997242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003335491412900603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078997242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.25300/misq/2014/38.1.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091454712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.25300/misq/2014/38.1.06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091454713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smap.2014.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094248109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bigdata.congress.2014.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095094355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-018-9844-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101630844", 
          "https://doi.org/10.1007/s10796-018-9844-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-018-9844-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101630844", 
          "https://doi.org/10.1007/s10796-018-9844-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/25148625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102515192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-32029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106952218", 
          "https://doi.org/10.1038/s41598-018-32029-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503095", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503095", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-05", 
    "datePublishedReg": "2019-01-05", 
    "description": "Contagious diseases pose significant challenges to public healthcare systems all over the world. The rise in emerging contagious and infectious diseases has led to calls for the use of new techniques and technologies capable of detecting, tracking, mapping and managing behavioral patterns in such diseases. In this study, we used Big Data technologies to analyze two sets of flu (influenza) activity data: Twitter data were used to extract behavioral patterns from a location-based social network and to monitor flu outbreaks (and their locations) in the US, and Cerner HealthFacts data warehouse was used to track real-world clinical encounters. We expected that the integration (mashing) of social media and real-world clinical encounters could be a valuable enhancement to the existing surveillance systems. Our results verified that flu-related traffic on social media is closely related with actual flu outbreaks. However, rather than using simple Pearson correlation, which assumes a zero lag between the online and real-world activities, we used a multi-method data analytics approach to obtain the spatio-temporal cross-correlation between the two flu trends and to explain behavioral patterns during the flu season. We found that clinical flu encounters lag behind online posts. Also, we identified several public locations from which a majority of posts initiated. These findings can help health authorities develop more effective interventions (behavioral and/or otherwise) during the outbreaks to reduce the spread and impact, and to inform individuals about the locations they should avoid during those periods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10796-018-9893-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136609", 
        "issn": [
          "1387-3326", 
          "1572-9419"
        ], 
        "name": "Information Systems Frontiers", 
        "type": "Periodical"
      }
    ], 
    "name": "Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7065a9cda05f8a3aadfc1cd9026a3bab543d89aa2b73636e8a47a1a676443e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10796-018-9893-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111161399"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10796-018-9893-0", 
      "https://app.dimensions.ai/details/publication/pub.1111161399"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55469_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10796-018-9893-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9893-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9893-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9893-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9893-0'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      81 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10796-018-9893-0 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Na12d4f84772c453dbb32573c75af0d67
4 schema:citation sg:pub.10.1007/11760146_54
5 sg:pub.10.1007/bf00365087
6 sg:pub.10.1007/s10796-014-9507-4
7 sg:pub.10.1007/s10796-018-9844-9
8 sg:pub.10.1038/nature06958
9 sg:pub.10.1038/nature07634
10 sg:pub.10.1038/s41598-018-32029-6
11 sg:pub.10.1038/srep08154
12 sg:pub.10.1038/srep12760
13 sg:pub.10.1038/srep25732
14 sg:pub.10.1186/1471-2458-9-483
15 https://app.dimensions.ai/details/publication/pub.1109503095
16 https://doi.org/10.1002/sim.2566
17 https://doi.org/10.1002/sim.5670
18 https://doi.org/10.1016/j.dss.2008.04.001
19 https://doi.org/10.1016/j.dss.2016.06.001
20 https://doi.org/10.1016/j.ijforecast.2014.01.004
21 https://doi.org/10.1016/j.ins.2015.05.004
22 https://doi.org/10.1016/j.jbi.2016.05.005
23 https://doi.org/10.1016/j.physa.2012.11.031
24 https://doi.org/10.1016/j.seps.2014.09.001
25 https://doi.org/10.1016/j.vaccine.2007.03.046
26 https://doi.org/10.1016/j.ypmed.2014.01.024
27 https://doi.org/10.1016/s1473-3099(13)70244-5
28 https://doi.org/10.1068/a231025
29 https://doi.org/10.1080/01621459.1988.10478560
30 https://doi.org/10.1080/01621459.2012.713876
31 https://doi.org/10.1080/15230406.2015.1059251
32 https://doi.org/10.1086/222355
33 https://doi.org/10.1086/228313
34 https://doi.org/10.1093/biomet/37.1-2.17
35 https://doi.org/10.1093/infdis/jiw376
36 https://doi.org/10.1109/bigdata.congress.2014.88
37 https://doi.org/10.1109/smap.2014.38
38 https://doi.org/10.1111/j.1539-6924.2010.01529.x
39 https://doi.org/10.1126/science.1248506
40 https://doi.org/10.1145/1989734.1989742
41 https://doi.org/10.1177/003335491412900603
42 https://doi.org/10.1177/0962280214527385
43 https://doi.org/10.1177/1460458215599822
44 https://doi.org/10.1287/isre.1110.0376
45 https://doi.org/10.1371/journal.pcbi.1004513
46 https://doi.org/10.1371/journal.pone.0019467
47 https://doi.org/10.1371/journal.pone.0043611
48 https://doi.org/10.1371/journal.pone.0064156
49 https://doi.org/10.1371/journal.pone.0083672
50 https://doi.org/10.1371/journal.pone.0125158
51 https://doi.org/10.1371/journal.pone.0126158
52 https://doi.org/10.1371/journal.pone.0157734
53 https://doi.org/10.1503/cmaj.1090215
54 https://doi.org/10.2196/jmir.3532
55 https://doi.org/10.2196/jmir.5086
56 https://doi.org/10.2307/1912791
57 https://doi.org/10.2307/2332142
58 https://doi.org/10.2307/25148625
59 https://doi.org/10.25300/misq/2014/38.1.05
60 https://doi.org/10.25300/misq/2014/38.1.06
61 schema:datePublished 2019-01-05
62 schema:datePublishedReg 2019-01-05
63 schema:description Contagious diseases pose significant challenges to public healthcare systems all over the world. The rise in emerging contagious and infectious diseases has led to calls for the use of new techniques and technologies capable of detecting, tracking, mapping and managing behavioral patterns in such diseases. In this study, we used Big Data technologies to analyze two sets of flu (influenza) activity data: Twitter data were used to extract behavioral patterns from a location-based social network and to monitor flu outbreaks (and their locations) in the US, and Cerner HealthFacts data warehouse was used to track real-world clinical encounters. We expected that the integration (mashing) of social media and real-world clinical encounters could be a valuable enhancement to the existing surveillance systems. Our results verified that flu-related traffic on social media is closely related with actual flu outbreaks. However, rather than using simple Pearson correlation, which assumes a zero lag between the online and real-world activities, we used a multi-method data analytics approach to obtain the spatio-temporal cross-correlation between the two flu trends and to explain behavioral patterns during the flu season. We found that clinical flu encounters lag behind online posts. Also, we identified several public locations from which a majority of posts initiated. These findings can help health authorities develop more effective interventions (behavioral and/or otherwise) during the outbreaks to reduce the spread and impact, and to inform individuals about the locations they should avoid during those periods.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf sg:journal.1136609
68 schema:name Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis
69 schema:pagination 1-18
70 schema:productId N7de15e4ef77240879b1975abb69ec961
71 N9d293b48ccdd42f7bc05fc5e908cf804
72 Nf10a35f4cb3241038f3dd5217c06d956
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111161399
74 https://doi.org/10.1007/s10796-018-9893-0
75 schema:sdDatePublished 2019-04-11T08:34
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nc99c2d5e8d2f40ca9a36d0e538c2edb3
78 schema:url https://link.springer.com/10.1007%2Fs10796-018-9893-0
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N7de15e4ef77240879b1975abb69ec961 schema:name doi
83 schema:value 10.1007/s10796-018-9893-0
84 rdf:type schema:PropertyValue
85 N83e232614186457a9fa59af83af86f48 rdf:first sg:person.011476723623.77
86 rdf:rest N84be95e2e7a7467893d61658bafa2a71
87 N84be95e2e7a7467893d61658bafa2a71 rdf:first sg:person.014471260323.35
88 rdf:rest Nf5ff1fbd61a84b73a442528e25ed4f49
89 N9d293b48ccdd42f7bc05fc5e908cf804 schema:name dimensions_id
90 schema:value pub.1111161399
91 rdf:type schema:PropertyValue
92 Na12d4f84772c453dbb32573c75af0d67 rdf:first sg:person.012346260523.95
93 rdf:rest N83e232614186457a9fa59af83af86f48
94 Nc99c2d5e8d2f40ca9a36d0e538c2edb3 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nf10a35f4cb3241038f3dd5217c06d956 schema:name readcube_id
97 schema:value d7065a9cda05f8a3aadfc1cd9026a3bab543d89aa2b73636e8a47a1a676443e2
98 rdf:type schema:PropertyValue
99 Nf5ff1fbd61a84b73a442528e25ed4f49 rdf:first sg:person.012251205050.53
100 rdf:rest rdf:nil
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information Systems
106 rdf:type schema:DefinedTerm
107 sg:journal.1136609 schema:issn 1387-3326
108 1572-9419
109 schema:name Information Systems Frontiers
110 rdf:type schema:Periodical
111 sg:person.011476723623.77 schema:affiliation https://www.grid.ac/institutes/grid.252754.3
112 schema:familyName Zolbanin
113 schema:givenName Hamed M.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476723623.77
115 rdf:type schema:Person
116 sg:person.012251205050.53 schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
117 schema:familyName Delen
118 schema:givenName Dursun
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012251205050.53
120 rdf:type schema:Person
121 sg:person.012346260523.95 schema:affiliation https://www.grid.ac/institutes/grid.268333.f
122 schema:familyName Hassan Zadeh
123 schema:givenName Amir
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346260523.95
125 rdf:type schema:Person
126 sg:person.014471260323.35 schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
127 schema:familyName Sharda
128 schema:givenName Ramesh
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014471260323.35
130 rdf:type schema:Person
131 sg:pub.10.1007/11760146_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048376507
132 https://doi.org/10.1007/11760146_54
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf00365087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036915876
135 https://doi.org/10.1007/bf00365087
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10796-014-9507-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017968657
138 https://doi.org/10.1007/s10796-014-9507-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10796-018-9844-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101630844
141 https://doi.org/10.1007/s10796-018-9844-9
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature06958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034823586
144 https://doi.org/10.1038/nature06958
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature07634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005138990
147 https://doi.org/10.1038/nature07634
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41598-018-32029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106952218
150 https://doi.org/10.1038/s41598-018-32029-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep08154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039368905
153 https://doi.org/10.1038/srep08154
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep12760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013223432
156 https://doi.org/10.1038/srep12760
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/srep25732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025198930
159 https://doi.org/10.1038/srep25732
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2458-9-483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022513738
162 https://doi.org/10.1186/1471-2458-9-483
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1109503095 schema:CreativeWork
165 https://doi.org/10.1002/sim.2566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048731563
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/sim.5670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035977431
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.dss.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044441546
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.dss.2016.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013206875
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijforecast.2014.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014176907
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ins.2015.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046217732
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jbi.2016.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022832775
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physa.2012.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034513949
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.seps.2014.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021543504
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.vaccine.2007.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039888663
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ypmed.2014.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024839249
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1473-3099(13)70244-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632525
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1068/a231025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058153101
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/01621459.1988.10478560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303537
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01621459.2012.713876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305958
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/15230406.2015.1059251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013064639
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1086/222355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058541853
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1086/228313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058547811
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/biomet/37.1-2.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416116
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/infdis/jiw376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059710337
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/bigdata.congress.2014.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095094355
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/smap.2014.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094248109
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1539-6924.2010.01529.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051446627
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1248506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469256
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1145/1989734.1989742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030180319
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1177/003335491412900603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078997242
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1177/0962280214527385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026925146
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1177/1460458215599822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064003639
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1287/isre.1110.0376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064711527
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1371/journal.pcbi.1004513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025057633
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1371/journal.pone.0019467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049659864
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0043611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052949382
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pone.0064156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037008868
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pone.0083672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004129176
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pone.0125158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053516114
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0126158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036415066
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pone.0157734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035830576
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1503/cmaj.1090215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049420510
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2196/jmir.3532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029778857
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2196/jmir.5086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069286402
244 rdf:type schema:CreativeWork
245 https://doi.org/10.2307/1912791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640326
246 rdf:type schema:CreativeWork
247 https://doi.org/10.2307/2332142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069893800
248 rdf:type schema:CreativeWork
249 https://doi.org/10.2307/25148625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102515192
250 rdf:type schema:CreativeWork
251 https://doi.org/10.25300/misq/2014/38.1.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091454712
252 rdf:type schema:CreativeWork
253 https://doi.org/10.25300/misq/2014/38.1.06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091454713
254 rdf:type schema:CreativeWork
255 https://www.grid.ac/institutes/grid.252754.3 schema:alternateName Ball State University
256 schema:name Department of Information Systems and Operations Management, Miller College of Business, Ball State University, Muncie, IN, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.268333.f schema:alternateName Wright State University
259 schema:name Department of Information Systems and Supply Chain Management, Raj Soin College of Business, Wright State University, Dayton, OH, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.65519.3e schema:alternateName Oklahoma State University
262 schema:name Department of Management Science and Information Systems, Spears School of Business, Oklahoma State University, Stillwater, OK, USA
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...