Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-30

AUTHORS

Joseph D. Prusa, Ryan T. Sagul, Taghi M. Khoshgoftaar

ABSTRACT

This paper proposes and demonstrates an approach for the often-attempted problem of market prediction, framed as classification task. We restrict our study to a widely purchased and well recognized commodity, West Texas Intermediate crude oil, which experiences significant volatility. For this purpose, nine learners using features extracted from monthly International Energy Agency (IEA) reports to predict undervalued, overvalued, and accurate valuation of the oil futures between 2003 and 2015. The often touted “Efficient Market Hypothesis” (EMH) suggests that it is impossible for individual investors to “beat the market” as market and external forces, such as geopolitical crises and natural disasters, are nearly impossible to predict. However, four algorithms were statistically better at the 95% confidence interval than “Zero-Rule” and “Random-Guess” strategies which are expected to pseudo-reflect the EMH. Furthermore, the addition of text features can significantly improve performance compared to only using price history from the oil futures data, challenging the validity of the semi-strong versions of the EMH in the crude oil market. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10796-018-9859-2

DOI

http://dx.doi.org/10.1007/s10796-018-9859-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104304263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Florida Atlantic University, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prusa", 
        "givenName": "Joseph D.", 
        "id": "sg:person.016032133205.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016032133205.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Florida Atlantic University, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sagul", 
        "givenName": "Ryan T.", 
        "id": "sg:person.07651762346.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651762346.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Florida Atlantic University, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoshgoftaar", 
        "givenName": "Taghi M.", 
        "id": "sg:person.010464406171.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010464406171.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.procs.2016.07.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002402521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0732-8516.2005.00090.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012838000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2010.03.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015786630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.irfa.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019611216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/505282.505283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2015.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025950041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-405x(95)00861-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029976728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1968.tb00815.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030781786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2009.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036755086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2015.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041065575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11758549_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043885046", 
          "https://doi.org/10.1007/11758549_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11758549_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043885046", 
          "https://doi.org/10.1007/11758549_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1970.tb00420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044035229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044607591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/003355397555253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063349061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2325486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069890176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2937838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070139562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2469/faj.v53.n6.2130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070834921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5539/ijsp.v1n2p164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072959019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cidm.2007.368947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094071823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2006.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094430468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2006.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094430468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ictai.2009.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094866311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.1199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579281"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-30", 
    "datePublishedReg": "2018-05-30", 
    "description": "This paper proposes and demonstrates an approach for the often-attempted problem of market prediction, framed as classification task. We restrict our study to a widely purchased and well recognized commodity, West Texas Intermediate crude oil, which experiences significant volatility. For this purpose, nine learners using features extracted from monthly International Energy Agency (IEA) reports to predict undervalued, overvalued, and accurate valuation of the oil futures between 2003 and 2015. The often touted \u201cEfficient Market Hypothesis\u201d (EMH) suggests that it is impossible for individual investors to \u201cbeat the market\u201d as market and external forces, such as geopolitical crises and natural disasters, are nearly impossible to predict. However, four algorithms were statistically better at the 95% confidence interval than \u201cZero-Rule\u201d and \u201cRandom-Guess\u201d strategies which are expected to pseudo-reflect the EMH. Furthermore, the addition of text features can significantly improve performance compared to only using price history from the oil futures data, challenging the validity of the semi-strong versions of the EMH in the crude oil market.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10796-018-9859-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3848961", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136609", 
        "issn": [
          "1387-3326", 
          "1572-9419"
        ], 
        "name": "Information Systems Frontiers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10796-018-9859-2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcc17c6864b4673fad98900f80ca96b49a4fc5ee370873d9b5e2493679d44c73"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104304263"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10796-018-9859-2", 
      "https://app.dimensions.ai/details/publication/pub.1104304263"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119713_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10796-018-9859-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9859-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9859-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9859-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9859-2'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      49 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10796-018-9859-2 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nb423ad8da88c42a7a8b9ebc91e24d355
4 schema:citation sg:pub.10.1007/11758549_63
5 https://doi.org/10.1016/0304-405x(95)00861-8
6 https://doi.org/10.1016/0306-4573(88)90021-0
7 https://doi.org/10.1016/j.eneco.2009.01.013
8 https://doi.org/10.1016/j.eneco.2015.02.018
9 https://doi.org/10.1016/j.engappai.2015.04.016
10 https://doi.org/10.1016/j.enpol.2010.03.067
11 https://doi.org/10.1016/j.eswa.2014.06.009
12 https://doi.org/10.1016/j.irfa.2016.10.009
13 https://doi.org/10.1016/j.procs.2016.07.157
14 https://doi.org/10.1109/cidm.2007.368947
15 https://doi.org/10.1109/icdm.2006.115
16 https://doi.org/10.1109/ictai.2009.25
17 https://doi.org/10.1111/j.0732-8516.2005.00090.x
18 https://doi.org/10.1111/j.1540-6261.1968.tb00815.x
19 https://doi.org/10.1111/j.1540-6261.1970.tb00420.x
20 https://doi.org/10.1145/505282.505283
21 https://doi.org/10.1162/003355397555253
22 https://doi.org/10.1613/jair.1199
23 https://doi.org/10.2307/2325486
24 https://doi.org/10.2307/2937838
25 https://doi.org/10.2469/faj.v53.n6.2130
26 https://doi.org/10.5539/ijsp.v1n2p164
27 schema:datePublished 2018-05-30
28 schema:datePublishedReg 2018-05-30
29 schema:description This paper proposes and demonstrates an approach for the often-attempted problem of market prediction, framed as classification task. We restrict our study to a widely purchased and well recognized commodity, West Texas Intermediate crude oil, which experiences significant volatility. For this purpose, nine learners using features extracted from monthly International Energy Agency (IEA) reports to predict undervalued, overvalued, and accurate valuation of the oil futures between 2003 and 2015. The often touted “Efficient Market Hypothesis” (EMH) suggests that it is impossible for individual investors to “beat the market” as market and external forces, such as geopolitical crises and natural disasters, are nearly impossible to predict. However, four algorithms were statistically better at the 95% confidence interval than “Zero-Rule” and “Random-Guess” strategies which are expected to pseudo-reflect the EMH. Furthermore, the addition of text features can significantly improve performance compared to only using price history from the oil futures data, challenging the validity of the semi-strong versions of the EMH in the crude oil market.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N383337cc1a3147488056e3d2b6f838e8
34 Ndbe077c2d2d94651a2833385336015db
35 sg:journal.1136609
36 schema:name Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures
37 schema:pagination 1-15
38 schema:productId N328263830f87448489ce218f5cae004d
39 Na2f628b4e93a417ea282c8b78d9ba731
40 Nda85f630fd9346d7902d00e18cd1891b
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104304263
42 https://doi.org/10.1007/s10796-018-9859-2
43 schema:sdDatePublished 2019-04-15T08:47
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nc92d51dd2f424542818387b626379719
46 schema:url https://link.springer.com/10.1007%2Fs10796-018-9859-2
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N328263830f87448489ce218f5cae004d schema:name doi
51 schema:value 10.1007/s10796-018-9859-2
52 rdf:type schema:PropertyValue
53 N383337cc1a3147488056e3d2b6f838e8 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 Na2f628b4e93a417ea282c8b78d9ba731 schema:name readcube_id
56 schema:value fcc17c6864b4673fad98900f80ca96b49a4fc5ee370873d9b5e2493679d44c73
57 rdf:type schema:PropertyValue
58 Na404266a4af64686a59cdf7ef82b74bf rdf:first sg:person.07651762346.83
59 rdf:rest Nc8f8d42be6404188a04f3759b4e2bc49
60 Nb423ad8da88c42a7a8b9ebc91e24d355 rdf:first sg:person.016032133205.14
61 rdf:rest Na404266a4af64686a59cdf7ef82b74bf
62 Nc8f8d42be6404188a04f3759b4e2bc49 rdf:first sg:person.010464406171.74
63 rdf:rest rdf:nil
64 Nc92d51dd2f424542818387b626379719 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nda85f630fd9346d7902d00e18cd1891b schema:name dimensions_id
67 schema:value pub.1104304263
68 rdf:type schema:PropertyValue
69 Ndbe077c2d2d94651a2833385336015db schema:volumeNumber 21
70 rdf:type schema:PublicationVolume
71 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
72 schema:name Economics
73 rdf:type schema:DefinedTerm
74 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
75 schema:name Applied Economics
76 rdf:type schema:DefinedTerm
77 sg:grant.3848961 http://pending.schema.org/fundedItem sg:pub.10.1007/s10796-018-9859-2
78 rdf:type schema:MonetaryGrant
79 sg:journal.1136609 schema:issn 1387-3326
80 1572-9419
81 schema:name Information Systems Frontiers
82 rdf:type schema:Periodical
83 sg:person.010464406171.74 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
84 schema:familyName Khoshgoftaar
85 schema:givenName Taghi M.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010464406171.74
87 rdf:type schema:Person
88 sg:person.016032133205.14 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
89 schema:familyName Prusa
90 schema:givenName Joseph D.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016032133205.14
92 rdf:type schema:Person
93 sg:person.07651762346.83 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
94 schema:familyName Sagul
95 schema:givenName Ryan T.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651762346.83
97 rdf:type schema:Person
98 sg:pub.10.1007/11758549_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043885046
99 https://doi.org/10.1007/11758549_63
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0304-405x(95)00861-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029976728
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0306-4573(88)90021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478827
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.eneco.2009.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036755086
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.eneco.2015.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025950041
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.engappai.2015.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041065575
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.enpol.2010.03.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015786630
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.eswa.2014.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044607591
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.irfa.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019611216
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.procs.2016.07.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002402521
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/cidm.2007.368947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094071823
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/icdm.2006.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094430468
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/ictai.2009.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094866311
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.0732-8516.2005.00090.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012838000
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1540-6261.1968.tb00815.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781786
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1540-6261.1970.tb00420.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044035229
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/505282.505283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316280
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1162/003355397555253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063349061
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1613/jair.1199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579281
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2307/2325486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069890176
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2307/2937838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070139562
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2469/faj.v53.n6.2130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070834921
142 rdf:type schema:CreativeWork
143 https://doi.org/10.5539/ijsp.v1n2p164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072959019
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
146 schema:name Florida Atlantic University, Boca Raton, FL, USA
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...