Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-16

AUTHORS

Eric Golinko, Xingquan Zhu

ABSTRACT

Feature embedding is an emerging research area which intends to transform features from the original space into a new space to support effective learning. Many feature embedding algorithms exist, but they often suffer from several major drawbacks, including (1) only handle single feature types, or users have to clearly separate features into different feature views and supply such information for feature embedding learning; (2) designed for either supervised or unsupervised learning tasks, but not for both; and (3) feature embedding for new out-of-training samples have to be obtained through a retraining phase, therefore unsuitable for online learning tasks. In this paper, we propose a generalized feature embedding algorithm, GEL, for both supervised, unsupervised, and online learning tasks. GEL learns feature embedding from any type of data or data with mixed feature types. For supervised learning tasks with class label information, GEL leverages a Class Partitioned Instance Representation (CPIR) process to arrange instances, based on their labels, as a dense binary representation via row and feature vectors for feature embedding learning. If class labels are unavailable, CPIR is naturally degenerated and treats all instances as one class. Based on the CPIR representation, GEL uses eigenvector decomposition to convert the proximity matrix into a low-dimensional space. For new out-of-training samples, their low-dimensional representation are derived through a direct conversion without a retraining phase. The learned numerical embedding features can be directly used to represent instances for effective learning. Experiments and comparisons on 28 datasets, including categorical, numerical, and ordinal features, demonstrate that embedding features learned from GEL can effectively represent the original instances for clustering, classification, and online learning. More... »

PAGES

1-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y

DOI

http://dx.doi.org/10.1007/s10796-018-9850-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103275143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Department of Computer, Electrical Engineering and Computer Science, Florida Atlantic University, 33431, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golinko", 
        "givenName": "Eric", 
        "id": "sg:person.010672474273.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010672474273.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Department of Computer, Electrical Engineering and Computer Science, Florida Atlantic University, 33431, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Xingquan", 
        "id": "sg:person.010771505735.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771505735.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/0-387-25465-x_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829690", 
          "https://doi.org/10.1007/0-387-25465-x_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012022753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-016-9660-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012525207", 
          "https://doi.org/10.1007/s10796-016-9660-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-016-9660-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012525207", 
          "https://doi.org/10.1007/s10796-016-9660-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72523-7_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018190340", 
          "https://doi.org/10.1007/978-3-540-72523-7_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2347736.2347755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027581364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-011-9318-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027703752", 
          "https://doi.org/10.1007/s10796-011-9318-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2014.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032192060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-015-9551-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034469917", 
          "https://doi.org/10.1007/s10796-015-9551-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1035613449", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21706-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613449", 
          "https://doi.org/10.1007/978-0-387-21706-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21706-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613449", 
          "https://doi.org/10.1007/978-0-387-21706-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1401890.1401987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040199415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ay41907j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044318118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.12.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046631161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048284262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-007-5040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050401014", 
          "https://doi.org/10.1007/s10994-007-5040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051806676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2647868.2654889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052031051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aoas327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053677798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2014.983521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2013.2272642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2330763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2520368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2012.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2036363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2451151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v052.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972740.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088799980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2014.6889941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095161688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1334543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095285865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iri.2017.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095852164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24963/ijcai.2017/472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096024130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098876957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2017.368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100060357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b97662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718990", 
          "https://doi.org/10.1007/b97662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b97662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109718990", 
          "https://doi.org/10.1007/b97662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420011234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725098"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-16", 
    "datePublishedReg": "2018-04-16", 
    "description": "Feature embedding is an emerging research area which intends to transform features from the original space into a new space to support effective learning. Many feature embedding algorithms exist, but they often suffer from several major drawbacks, including (1) only handle single feature types, or users have to clearly separate features into different feature views and supply such information for feature embedding learning; (2) designed for either supervised or unsupervised learning tasks, but not for both; and (3) feature embedding for new out-of-training samples have to be obtained through a retraining phase, therefore unsuitable for online learning tasks. In this paper, we propose a generalized feature embedding algorithm, GEL, for both supervised, unsupervised, and online learning tasks. GEL learns feature embedding from any type of data or data with mixed feature types. For supervised learning tasks with class label information, GEL leverages a Class Partitioned Instance Representation (CPIR) process to arrange instances, based on their labels, as a dense binary representation via row and feature vectors for feature embedding learning. If class labels are unavailable, CPIR is naturally degenerated and treats all instances as one class. Based on the CPIR representation, GEL uses eigenvector decomposition to convert the proximity matrix into a low-dimensional space. For new out-of-training samples, their low-dimensional representation are derived through a direct conversion without a retraining phase. The learned numerical embedding features can be directly used to represent instances for effective learning. Experiments and comparisons on 28 datasets, including categorical, numerical, and ordinal features, demonstrate that embedding features learned from GEL can effectively represent the original instances for clustering, classification, and online learning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10796-018-9850-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136609", 
        "issn": [
          "1387-3326", 
          "1572-9419"
        ], 
        "name": "Information Systems Frontiers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10796-018-9850-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd48e8af5457ba09f259b6562ef2f5827664de153b3c6028273fb3a4df2dc898"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103275143"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10796-018-9850-y", 
      "https://app.dimensions.ai/details/publication/pub.1103275143"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119747_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10796-018-9850-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      61 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10796-018-9850-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc9c0a5a7fcea4164aad07b2a1d47fded
4 schema:citation sg:pub.10.1007/0-387-25465-x_9
5 sg:pub.10.1007/978-0-387-21706-2
6 sg:pub.10.1007/978-3-540-72523-7_49
7 sg:pub.10.1007/b97662
8 sg:pub.10.1007/s10796-011-9318-9
9 sg:pub.10.1007/s10796-015-9551-8
10 sg:pub.10.1007/s10796-016-9660-z
11 sg:pub.10.1007/s10994-007-5040-8
12 https://app.dimensions.ai/details/publication/pub.1035613449
13 https://doi.org/10.1016/j.asoc.2016.02.015
14 https://doi.org/10.1016/j.neucom.2014.12.119
15 https://doi.org/10.1016/j.patcog.2014.12.016
16 https://doi.org/10.1016/j.rse.2007.07.028
17 https://doi.org/10.1039/c3ay41907j
18 https://doi.org/10.1080/01621459.2014.983521
19 https://doi.org/10.1109/iccv.2017.368
20 https://doi.org/10.1109/icpr.2004.1334543
21 https://doi.org/10.1109/ijcnn.2014.6889941
22 https://doi.org/10.1109/iri.2017.21
23 https://doi.org/10.1109/tcyb.2013.2272642
24 https://doi.org/10.1109/tip.2014.2330763
25 https://doi.org/10.1109/tip.2016.2520368
26 https://doi.org/10.1109/tkde.2012.136
27 https://doi.org/10.1109/tnn.2009.2036363
28 https://doi.org/10.1109/tnnls.2015.2451151
29 https://doi.org/10.1126/science.290.5500.2323
30 https://doi.org/10.1137/1.9781611972740.47
31 https://doi.org/10.1142/9097
32 https://doi.org/10.1145/1401890.1401987
33 https://doi.org/10.1145/2347736.2347755
34 https://doi.org/10.1145/2647868.2654889
35 https://doi.org/10.1201/9781420011234
36 https://doi.org/10.1214/10-aoas327
37 https://doi.org/10.18637/jss.v052.i05
38 https://doi.org/10.24963/ijcai.2017/472
39 schema:datePublished 2018-04-16
40 schema:datePublishedReg 2018-04-16
41 schema:description Feature embedding is an emerging research area which intends to transform features from the original space into a new space to support effective learning. Many feature embedding algorithms exist, but they often suffer from several major drawbacks, including (1) only handle single feature types, or users have to clearly separate features into different feature views and supply such information for feature embedding learning; (2) designed for either supervised or unsupervised learning tasks, but not for both; and (3) feature embedding for new out-of-training samples have to be obtained through a retraining phase, therefore unsuitable for online learning tasks. In this paper, we propose a generalized feature embedding algorithm, GEL, for both supervised, unsupervised, and online learning tasks. GEL learns feature embedding from any type of data or data with mixed feature types. For supervised learning tasks with class label information, GEL leverages a Class Partitioned Instance Representation (CPIR) process to arrange instances, based on their labels, as a dense binary representation via row and feature vectors for feature embedding learning. If class labels are unavailable, CPIR is naturally degenerated and treats all instances as one class. Based on the CPIR representation, GEL uses eigenvector decomposition to convert the proximity matrix into a low-dimensional space. For new out-of-training samples, their low-dimensional representation are derived through a direct conversion without a retraining phase. The learned numerical embedding features can be directly used to represent instances for effective learning. Experiments and comparisons on 28 datasets, including categorical, numerical, and ordinal features, demonstrate that embedding features learned from GEL can effectively represent the original instances for clustering, classification, and online learning.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N67bb4fd4b0724b229dff1b9bec798403
46 Na9a075ec9b874084a8e882fccd1b8704
47 sg:journal.1136609
48 schema:name Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks
49 schema:pagination 1-18
50 schema:productId N7d292faf14034e46b12ad283ec31699c
51 N9c1f782b09a2483e82552cb490f3e9b4
52 Nf1dc978e459c4656863e1cb621ec7060
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103275143
54 https://doi.org/10.1007/s10796-018-9850-y
55 schema:sdDatePublished 2019-04-15T08:53
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N7f8270c56933446886cdb541fee6969c
58 schema:url https://link.springer.com/10.1007%2Fs10796-018-9850-y
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N67bb4fd4b0724b229dff1b9bec798403 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N7d292faf14034e46b12ad283ec31699c schema:name doi
65 schema:value 10.1007/s10796-018-9850-y
66 rdf:type schema:PropertyValue
67 N7f8270c56933446886cdb541fee6969c schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N9c1f782b09a2483e82552cb490f3e9b4 schema:name dimensions_id
70 schema:value pub.1103275143
71 rdf:type schema:PropertyValue
72 Na9a075ec9b874084a8e882fccd1b8704 schema:volumeNumber 21
73 rdf:type schema:PublicationVolume
74 Nc9c0a5a7fcea4164aad07b2a1d47fded rdf:first sg:person.010672474273.16
75 rdf:rest Nf1124862b6714a13bb101398973b9448
76 Nf1124862b6714a13bb101398973b9448 rdf:first sg:person.010771505735.21
77 rdf:rest rdf:nil
78 Nf1dc978e459c4656863e1cb621ec7060 schema:name readcube_id
79 schema:value cd48e8af5457ba09f259b6562ef2f5827664de153b3c6028273fb3a4df2dc898
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:journal.1136609 schema:issn 1387-3326
88 1572-9419
89 schema:name Information Systems Frontiers
90 rdf:type schema:Periodical
91 sg:person.010672474273.16 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
92 schema:familyName Golinko
93 schema:givenName Eric
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010672474273.16
95 rdf:type schema:Person
96 sg:person.010771505735.21 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
97 schema:familyName Zhu
98 schema:givenName Xingquan
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771505735.21
100 rdf:type schema:Person
101 sg:pub.10.1007/0-387-25465-x_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829690
102 https://doi.org/10.1007/0-387-25465-x_9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
105 https://doi.org/10.1007/978-0-387-21706-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-540-72523-7_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018190340
108 https://doi.org/10.1007/978-3-540-72523-7_49
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/b97662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718990
111 https://doi.org/10.1007/b97662
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10796-011-9318-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027703752
114 https://doi.org/10.1007/s10796-011-9318-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10796-015-9551-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034469917
117 https://doi.org/10.1007/s10796-015-9551-8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10796-016-9660-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012525207
120 https://doi.org/10.1007/s10796-016-9660-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10994-007-5040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050401014
123 https://doi.org/10.1007/s10994-007-5040-8
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1035613449 schema:CreativeWork
126 https://doi.org/10.1016/j.asoc.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012022753
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.neucom.2014.12.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046631161
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.patcog.2014.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032192060
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.rse.2007.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048284262
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1039/c3ay41907j schema:sameAs https://app.dimensions.ai/details/publication/pub.1044318118
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/01621459.2014.983521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306334
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/iccv.2017.368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100060357
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/icpr.2004.1334543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095285865
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/ijcnn.2014.6889941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095161688
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/iri.2017.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095852164
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tcyb.2013.2272642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579508
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tip.2014.2330763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644006
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tip.2016.2520368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644825
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tkde.2012.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662531
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tnn.2009.2036363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717642
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tnnls.2015.2451151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718903
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/1.9781611972740.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799980
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1142/9097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098876957
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/1401890.1401987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040199415
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/2347736.2347755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581364
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1201/9781420011234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725098
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1214/10-aoas327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053677798
173 rdf:type schema:CreativeWork
174 https://doi.org/10.18637/jss.v052.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672781
175 rdf:type schema:CreativeWork
176 https://doi.org/10.24963/ijcai.2017/472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096024130
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
179 schema:name Department of Computer, Electrical Engineering and Computer Science, Florida Atlantic University, 33431, Boca Raton, FL, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...