Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-16

AUTHORS

Eric Golinko, Xingquan Zhu

ABSTRACT

Feature embedding is an emerging research area which intends to transform features from the original space into a new space to support effective learning. Many feature embedding algorithms exist, but they often suffer from several major drawbacks, including (1) only handle single feature types, or users have to clearly separate features into different feature views and supply such information for feature embedding learning; (2) designed for either supervised or unsupervised learning tasks, but not for both; and (3) feature embedding for new out-of-training samples have to be obtained through a retraining phase, therefore unsuitable for online learning tasks. In this paper, we propose a generalized feature embedding algorithm, GEL, for both supervised, unsupervised, and online learning tasks. GEL learns feature embedding from any type of data or data with mixed feature types. For supervised learning tasks with class label information, GEL leverages a Class Partitioned Instance Representation (CPIR) process to arrange instances, based on their labels, as a dense binary representation via row and feature vectors for feature embedding learning. If class labels are unavailable, CPIR is naturally degenerated and treats all instances as one class. Based on the CPIR representation, GEL uses eigenvector decomposition to convert the proximity matrix into a low-dimensional space. For new out-of-training samples, their low-dimensional representation are derived through a direct conversion without a retraining phase. The learned numerical embedding features can be directly used to represent instances for effective learning. Experiments and comparisons on 28 datasets, including categorical, numerical, and ordinal features, demonstrate that embedding features learned from GEL can effectively represent the original instances for clustering, classification, and online learning. More... »

PAGES

1-18

References to SciGraph publications

  • 2005. Decision Trees in DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK
  • 2002. Modern Applied Statistics with S in NONE
  • 1997. Linear Algebra Done Right in NONE
  • 2013-03. “Padding” bitmaps to support similarity and mining in INFORMATION SYSTEMS FRONTIERS
  • 2007. An Ensemble Approach for Incremental Learning in Nonstationary Environments in MULTIPLE CLASSIFIER SYSTEMS
  • 2016-08. Identity management based on PCA and SVM in INFORMATION SYSTEMS FRONTIERS
  • 2008-12. Convex multi-task feature learning in MACHINE LEARNING
  • 2016-10. Weighted subspace modeling for semantic concept retrieval using gaussian mixture models in INFORMATION SYSTEMS FRONTIERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y

    DOI

    http://dx.doi.org/10.1007/s10796-018-9850-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103275143


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Florida Atlantic University", 
              "id": "https://www.grid.ac/institutes/grid.255951.f", 
              "name": [
                "Department of Computer, Electrical Engineering and Computer Science, Florida Atlantic University, 33431, Boca Raton, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Golinko", 
            "givenName": "Eric", 
            "id": "sg:person.010672474273.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010672474273.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Florida Atlantic University", 
              "id": "https://www.grid.ac/institutes/grid.255951.f", 
              "name": [
                "Department of Computer, Electrical Engineering and Computer Science, Florida Atlantic University, 33431, Boca Raton, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Xingquan", 
            "id": "sg:person.010771505735.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771505735.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/0-387-25465-x_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006829690", 
              "https://doi.org/10.1007/0-387-25465-x_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2016.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012022753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10796-016-9660-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012525207", 
              "https://doi.org/10.1007/s10796-016-9660-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10796-016-9660-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012525207", 
              "https://doi.org/10.1007/s10796-016-9660-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72523-7_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018190340", 
              "https://doi.org/10.1007/978-3-540-72523-7_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2347736.2347755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027581364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10796-011-9318-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027703752", 
              "https://doi.org/10.1007/s10796-011-9318-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2014.12.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032192060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10796-015-9551-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034469917", 
              "https://doi.org/10.1007/s10796-015-9551-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1035613449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1401890.1401987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040199415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ay41907j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044318118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2014.12.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046631161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2007.07.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048284262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-007-5040-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050401014", 
              "https://doi.org/10.1007/s10994-007-5040-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.290.5500.2323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051806676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2647868.2654889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052031051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/10-aoas327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053677798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.2014.983521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058306334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2013.2272642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061579508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2014.2330763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061644006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2016.2520368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061644825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2012.136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061662531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2009.2036363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnnls.2015.2451151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061718903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v052.i05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611972740.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088799980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2014.6889941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095161688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2004.1334543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095285865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iri.2017.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095852164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24963/ijcai.2017/472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096024130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098876957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2017.368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100060357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b97662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109718990", 
              "https://doi.org/10.1007/b97662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b97662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109718990", 
              "https://doi.org/10.1007/b97662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420011234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109725098"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04-16", 
        "datePublishedReg": "2018-04-16", 
        "description": "Feature embedding is an emerging research area which intends to transform features from the original space into a new space to support effective learning. Many feature embedding algorithms exist, but they often suffer from several major drawbacks, including (1) only handle single feature types, or users have to clearly separate features into different feature views and supply such information for feature embedding learning; (2) designed for either supervised or unsupervised learning tasks, but not for both; and (3) feature embedding for new out-of-training samples have to be obtained through a retraining phase, therefore unsuitable for online learning tasks. In this paper, we propose a generalized feature embedding algorithm, GEL, for both supervised, unsupervised, and online learning tasks. GEL learns feature embedding from any type of data or data with mixed feature types. For supervised learning tasks with class label information, GEL leverages a Class Partitioned Instance Representation (CPIR) process to arrange instances, based on their labels, as a dense binary representation via row and feature vectors for feature embedding learning. If class labels are unavailable, CPIR is naturally degenerated and treats all instances as one class. Based on the CPIR representation, GEL uses eigenvector decomposition to convert the proximity matrix into a low-dimensional space. For new out-of-training samples, their low-dimensional representation are derived through a direct conversion without a retraining phase. The learned numerical embedding features can be directly used to represent instances for effective learning. Experiments and comparisons on 28 datasets, including categorical, numerical, and ordinal features, demonstrate that embedding features learned from GEL can effectively represent the original instances for clustering, classification, and online learning.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10796-018-9850-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136609", 
            "issn": [
              "1387-3326", 
              "1572-9419"
            ], 
            "name": "Information Systems Frontiers", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks", 
        "pagination": "1-18", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10796-018-9850-y"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cd48e8af5457ba09f259b6562ef2f5827664de153b3c6028273fb3a4df2dc898"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103275143"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10796-018-9850-y", 
          "https://app.dimensions.ai/details/publication/pub.1103275143"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119747_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10796-018-9850-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-018-9850-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      21 PREDICATES      61 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10796-018-9850-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8987648021a84803a2c49c4c7d3b09f3
    4 schema:citation sg:pub.10.1007/0-387-25465-x_9
    5 sg:pub.10.1007/978-0-387-21706-2
    6 sg:pub.10.1007/978-3-540-72523-7_49
    7 sg:pub.10.1007/b97662
    8 sg:pub.10.1007/s10796-011-9318-9
    9 sg:pub.10.1007/s10796-015-9551-8
    10 sg:pub.10.1007/s10796-016-9660-z
    11 sg:pub.10.1007/s10994-007-5040-8
    12 https://app.dimensions.ai/details/publication/pub.1035613449
    13 https://doi.org/10.1016/j.asoc.2016.02.015
    14 https://doi.org/10.1016/j.neucom.2014.12.119
    15 https://doi.org/10.1016/j.patcog.2014.12.016
    16 https://doi.org/10.1016/j.rse.2007.07.028
    17 https://doi.org/10.1039/c3ay41907j
    18 https://doi.org/10.1080/01621459.2014.983521
    19 https://doi.org/10.1109/iccv.2017.368
    20 https://doi.org/10.1109/icpr.2004.1334543
    21 https://doi.org/10.1109/ijcnn.2014.6889941
    22 https://doi.org/10.1109/iri.2017.21
    23 https://doi.org/10.1109/tcyb.2013.2272642
    24 https://doi.org/10.1109/tip.2014.2330763
    25 https://doi.org/10.1109/tip.2016.2520368
    26 https://doi.org/10.1109/tkde.2012.136
    27 https://doi.org/10.1109/tnn.2009.2036363
    28 https://doi.org/10.1109/tnnls.2015.2451151
    29 https://doi.org/10.1126/science.290.5500.2323
    30 https://doi.org/10.1137/1.9781611972740.47
    31 https://doi.org/10.1142/9097
    32 https://doi.org/10.1145/1401890.1401987
    33 https://doi.org/10.1145/2347736.2347755
    34 https://doi.org/10.1145/2647868.2654889
    35 https://doi.org/10.1201/9781420011234
    36 https://doi.org/10.1214/10-aoas327
    37 https://doi.org/10.18637/jss.v052.i05
    38 https://doi.org/10.24963/ijcai.2017/472
    39 schema:datePublished 2018-04-16
    40 schema:datePublishedReg 2018-04-16
    41 schema:description Feature embedding is an emerging research area which intends to transform features from the original space into a new space to support effective learning. Many feature embedding algorithms exist, but they often suffer from several major drawbacks, including (1) only handle single feature types, or users have to clearly separate features into different feature views and supply such information for feature embedding learning; (2) designed for either supervised or unsupervised learning tasks, but not for both; and (3) feature embedding for new out-of-training samples have to be obtained through a retraining phase, therefore unsuitable for online learning tasks. In this paper, we propose a generalized feature embedding algorithm, GEL, for both supervised, unsupervised, and online learning tasks. GEL learns feature embedding from any type of data or data with mixed feature types. For supervised learning tasks with class label information, GEL leverages a Class Partitioned Instance Representation (CPIR) process to arrange instances, based on their labels, as a dense binary representation via row and feature vectors for feature embedding learning. If class labels are unavailable, CPIR is naturally degenerated and treats all instances as one class. Based on the CPIR representation, GEL uses eigenvector decomposition to convert the proximity matrix into a low-dimensional space. For new out-of-training samples, their low-dimensional representation are derived through a direct conversion without a retraining phase. The learned numerical embedding features can be directly used to represent instances for effective learning. Experiments and comparisons on 28 datasets, including categorical, numerical, and ordinal features, demonstrate that embedding features learned from GEL can effectively represent the original instances for clustering, classification, and online learning.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf Na1c9a42833b74c60b9d417d73c2919b7
    46 Nf4eb12f2284b48d2b8aa582905536400
    47 sg:journal.1136609
    48 schema:name Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks
    49 schema:pagination 1-18
    50 schema:productId N2eea97ef419d4e0fb92ae23247941c95
    51 N4087c9e452ec4daca8932f3099b46af4
    52 Ndb92929415ec4caca838483684bd174c
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103275143
    54 https://doi.org/10.1007/s10796-018-9850-y
    55 schema:sdDatePublished 2019-04-15T08:53
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N82d7e1d2e08a45a3a0eb15b0280e8dbc
    58 schema:url https://link.springer.com/10.1007%2Fs10796-018-9850-y
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N2eea97ef419d4e0fb92ae23247941c95 schema:name dimensions_id
    63 schema:value pub.1103275143
    64 rdf:type schema:PropertyValue
    65 N4087c9e452ec4daca8932f3099b46af4 schema:name readcube_id
    66 schema:value cd48e8af5457ba09f259b6562ef2f5827664de153b3c6028273fb3a4df2dc898
    67 rdf:type schema:PropertyValue
    68 N72be85d49f0b477d9d2d6f694fb6a4bd rdf:first sg:person.010771505735.21
    69 rdf:rest rdf:nil
    70 N82d7e1d2e08a45a3a0eb15b0280e8dbc schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N8987648021a84803a2c49c4c7d3b09f3 rdf:first sg:person.010672474273.16
    73 rdf:rest N72be85d49f0b477d9d2d6f694fb6a4bd
    74 Na1c9a42833b74c60b9d417d73c2919b7 schema:volumeNumber 21
    75 rdf:type schema:PublicationVolume
    76 Ndb92929415ec4caca838483684bd174c schema:name doi
    77 schema:value 10.1007/s10796-018-9850-y
    78 rdf:type schema:PropertyValue
    79 Nf4eb12f2284b48d2b8aa582905536400 schema:issueNumber 1
    80 rdf:type schema:PublicationIssue
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Artificial Intelligence and Image Processing
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1136609 schema:issn 1387-3326
    88 1572-9419
    89 schema:name Information Systems Frontiers
    90 rdf:type schema:Periodical
    91 sg:person.010672474273.16 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
    92 schema:familyName Golinko
    93 schema:givenName Eric
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010672474273.16
    95 rdf:type schema:Person
    96 sg:person.010771505735.21 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
    97 schema:familyName Zhu
    98 schema:givenName Xingquan
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771505735.21
    100 rdf:type schema:Person
    101 sg:pub.10.1007/0-387-25465-x_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829690
    102 https://doi.org/10.1007/0-387-25465-x_9
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
    105 https://doi.org/10.1007/978-0-387-21706-2
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-540-72523-7_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018190340
    108 https://doi.org/10.1007/978-3-540-72523-7_49
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/b97662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109718990
    111 https://doi.org/10.1007/b97662
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s10796-011-9318-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027703752
    114 https://doi.org/10.1007/s10796-011-9318-9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s10796-015-9551-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034469917
    117 https://doi.org/10.1007/s10796-015-9551-8
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s10796-016-9660-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012525207
    120 https://doi.org/10.1007/s10796-016-9660-z
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s10994-007-5040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050401014
    123 https://doi.org/10.1007/s10994-007-5040-8
    124 rdf:type schema:CreativeWork
    125 https://app.dimensions.ai/details/publication/pub.1035613449 schema:CreativeWork
    126 https://doi.org/10.1016/j.asoc.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012022753
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.neucom.2014.12.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046631161
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.patcog.2014.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032192060
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.rse.2007.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048284262
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1039/c3ay41907j schema:sameAs https://app.dimensions.ai/details/publication/pub.1044318118
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1080/01621459.2014.983521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306334
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/iccv.2017.368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100060357
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/icpr.2004.1334543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095285865
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/ijcnn.2014.6889941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095161688
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/iri.2017.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095852164
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/tcyb.2013.2272642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579508
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/tip.2014.2330763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644006
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/tip.2016.2520368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644825
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/tkde.2012.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662531
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/tnn.2009.2036363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717642
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/tnnls.2015.2451151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718903
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1137/1.9781611972740.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799980
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1142/9097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098876957
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1145/1401890.1401987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040199415
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1145/2347736.2347755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581364
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1201/9781420011234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725098
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1214/10-aoas327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053677798
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.18637/jss.v052.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672781
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.24963/ijcai.2017/472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096024130
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
    179 schema:name Department of Computer, Electrical Engineering and Computer Science, Florida Atlantic University, 33431, Boca Raton, FL, USA
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...