A comparative analysis of semi-supervised learning: The case of article selection for medical systematic reviews View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Jun Liu, Prem Timsina, Omar El-Gayar

ABSTRACT

While systematic reviews are positioned as an essential element of modern evidence-based medical practice, the creation of these reviews is resource intensive. To mitigate this problem, there have been some attempts to leverage supervised machine learning to automate the article triage procedure. This approach has been proved to be helpful for updating existing systematic reviews. However, this technique holds very little promise for creating new reviews because training data is rarely available when it comes to systematic creation. In this research we assess and compare the applicability of semi-supervised learning to overcome this labeling bottleneck and support the creation of systematic reviews. The results indicated that semi-supervised learning could significantly reduce the human effort and is a viable technique for automating medical systematic review creation with a small-sized training dataset. More... »

PAGES

195-207

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10796-016-9724-0

DOI

http://dx.doi.org/10.1007/s10796-016-9724-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024300538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "Dakota State University, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jun", 
        "id": "sg:person.010456074535.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456074535.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "Dakota State University, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timsina", 
        "givenName": "Prem", 
        "id": "sg:person.014402352271.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402352271.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "Dakota State University, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Gayar", 
        "givenName": "Omar", 
        "id": "sg:person.07602212473.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602212473.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1197/jamia.m1929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002019499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/00220410410560582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003361631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m3162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011186227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10796-015-9589-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018520860", 
          "https://doi.org/10.1007/s10796-015-9589-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2013.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023856540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s12-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033337271", 
          "https://doi.org/10.1186/1471-2105-12-s12-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2014.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034810947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040209650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.12.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043302661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.004325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045439254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2046-4053-3-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046902330", 
          "https://doi.org/10.1186/2046-4053-3-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrsm.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050233906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrsm.1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052959203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053402364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.282.7.634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054163941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4304/jcp.6.7.1438-1443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072446905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-159-9-201311050-00730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073713963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077001465", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "While systematic reviews are positioned as an essential element of modern evidence-based medical practice, the creation of these reviews is resource intensive. To mitigate this problem, there have been some attempts to leverage supervised machine learning to automate the article triage procedure. This approach has been proved to be helpful for updating existing systematic reviews. However, this technique holds very little promise for creating new reviews because training data is rarely available when it comes to systematic creation. In this research we assess and compare the applicability of semi-supervised learning to overcome this labeling bottleneck and support the creation of systematic reviews. The results indicated that semi-supervised learning could significantly reduce the human effort and is a viable technique for automating medical systematic review creation with a small-sized training dataset.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10796-016-9724-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136609", 
        "issn": [
          "1387-3326", 
          "1572-9419"
        ], 
        "name": "Information Systems Frontiers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A comparative analysis of semi-supervised learning: The case of article selection for medical systematic reviews", 
    "pagination": "195-207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73c56553e2424492408d9a2c67dd5801d5e38c8ec7bdbcd52a7c98911a2c5d9a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10796-016-9724-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024300538"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10796-016-9724-0", 
      "https://app.dimensions.ai/details/publication/pub.1024300538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10796-016-9724-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-016-9724-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-016-9724-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-016-9724-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-016-9724-0'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10796-016-9724-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5701f5b5bd1a431cbbff87619f7df74f
4 schema:citation sg:pub.10.1007/s10796-015-9589-7
5 sg:pub.10.1186/1471-2105-12-s12-s4
6 sg:pub.10.1186/2046-4053-3-74
7 https://app.dimensions.ai/details/publication/pub.1077001465
8 https://doi.org/10.1001/jama.2013.393
9 https://doi.org/10.1001/jama.282.7.634
10 https://doi.org/10.1002/jrsm.1093
11 https://doi.org/10.1002/jrsm.27
12 https://doi.org/10.1016/j.artmed.2012.05.002
13 https://doi.org/10.1016/j.eswa.2013.08.047
14 https://doi.org/10.1016/j.neucom.2012.12.056
15 https://doi.org/10.1016/j.patcog.2014.07.025
16 https://doi.org/10.1108/00220410410560582
17 https://doi.org/10.1136/jamia.2010.004325
18 https://doi.org/10.1197/jamia.m1929
19 https://doi.org/10.1197/jamia.m3162
20 https://doi.org/10.4304/jcp.6.7.1438-1443
21 https://doi.org/10.7326/0003-4819-159-9-201311050-00730
22 schema:datePublished 2018-04
23 schema:datePublishedReg 2018-04-01
24 schema:description While systematic reviews are positioned as an essential element of modern evidence-based medical practice, the creation of these reviews is resource intensive. To mitigate this problem, there have been some attempts to leverage supervised machine learning to automate the article triage procedure. This approach has been proved to be helpful for updating existing systematic reviews. However, this technique holds very little promise for creating new reviews because training data is rarely available when it comes to systematic creation. In this research we assess and compare the applicability of semi-supervised learning to overcome this labeling bottleneck and support the creation of systematic reviews. The results indicated that semi-supervised learning could significantly reduce the human effort and is a viable technique for automating medical systematic review creation with a small-sized training dataset.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N92f76ebb3e284676a464e73c3e2253ac
29 Nf130d5eb5f8a4cf4828693141b2bd0c0
30 sg:journal.1136609
31 schema:name A comparative analysis of semi-supervised learning: The case of article selection for medical systematic reviews
32 schema:pagination 195-207
33 schema:productId Nba43203a74c44a51954153e6ee4893b4
34 Ncc11dabf79a04bc7b02142183c34c216
35 Nec87608e97fb42328016af6e6820a0d1
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024300538
37 https://doi.org/10.1007/s10796-016-9724-0
38 schema:sdDatePublished 2019-04-11T09:30
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb3e50044d3b04b72bb3dd2e24dab4ddf
41 schema:url https://link.springer.com/10.1007%2Fs10796-016-9724-0
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N5701f5b5bd1a431cbbff87619f7df74f rdf:first sg:person.010456074535.86
46 rdf:rest N5b0cc62f600f4273a2ac908a6165c9f9
47 N5b0cc62f600f4273a2ac908a6165c9f9 rdf:first sg:person.014402352271.98
48 rdf:rest N71aa98cbd3034a90b5dc1628d0b9784f
49 N71aa98cbd3034a90b5dc1628d0b9784f rdf:first sg:person.07602212473.17
50 rdf:rest rdf:nil
51 N92f76ebb3e284676a464e73c3e2253ac schema:issueNumber 2
52 rdf:type schema:PublicationIssue
53 Nb3e50044d3b04b72bb3dd2e24dab4ddf schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nba43203a74c44a51954153e6ee4893b4 schema:name doi
56 schema:value 10.1007/s10796-016-9724-0
57 rdf:type schema:PropertyValue
58 Ncc11dabf79a04bc7b02142183c34c216 schema:name dimensions_id
59 schema:value pub.1024300538
60 rdf:type schema:PropertyValue
61 Nec87608e97fb42328016af6e6820a0d1 schema:name readcube_id
62 schema:value 73c56553e2424492408d9a2c67dd5801d5e38c8ec7bdbcd52a7c98911a2c5d9a
63 rdf:type schema:PropertyValue
64 Nf130d5eb5f8a4cf4828693141b2bd0c0 schema:volumeNumber 20
65 rdf:type schema:PublicationVolume
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1136609 schema:issn 1387-3326
73 1572-9419
74 schema:name Information Systems Frontiers
75 rdf:type schema:Periodical
76 sg:person.010456074535.86 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
77 schema:familyName Liu
78 schema:givenName Jun
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456074535.86
80 rdf:type schema:Person
81 sg:person.014402352271.98 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
82 schema:familyName Timsina
83 schema:givenName Prem
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402352271.98
85 rdf:type schema:Person
86 sg:person.07602212473.17 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
87 schema:familyName El-Gayar
88 schema:givenName Omar
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602212473.17
90 rdf:type schema:Person
91 sg:pub.10.1007/s10796-015-9589-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018520860
92 https://doi.org/10.1007/s10796-015-9589-7
93 rdf:type schema:CreativeWork
94 sg:pub.10.1186/1471-2105-12-s12-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033337271
95 https://doi.org/10.1186/1471-2105-12-s12-s4
96 rdf:type schema:CreativeWork
97 sg:pub.10.1186/2046-4053-3-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046902330
98 https://doi.org/10.1186/2046-4053-3-74
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1077001465 schema:CreativeWork
101 https://doi.org/10.1001/jama.2013.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023856540
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1001/jama.282.7.634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054163941
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/jrsm.1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052959203
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/jrsm.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050233906
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.artmed.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040209650
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.eswa.2013.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053402364
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neucom.2012.12.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043302661
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.patcog.2014.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034810947
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1108/00220410410560582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003361631
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1136/jamia.2010.004325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045439254
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1197/jamia.m1929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002019499
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1197/jamia.m3162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011186227
124 rdf:type schema:CreativeWork
125 https://doi.org/10.4304/jcp.6.7.1438-1443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072446905
126 rdf:type schema:CreativeWork
127 https://doi.org/10.7326/0003-4819-159-9-201311050-00730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073713963
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.254833.b schema:alternateName Dakota State University
130 schema:name Dakota State University, Madison, SD, USA
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...