Advanced analytics for the automation of medical systematic reviews View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

Prem Timsina, Jun Liu, Omar El-Gayar

ABSTRACT

While systematic reviews (SRs) are positioned as an essential element of modern evidence-based medical practice, the creation and update of these reviews is resource intensive. In this research, we propose to leverage advanced analytics techniques for automatically classifying articles for inclusion and exclusion for systematic reviews. Specifically, we used soft-margin polynomial Support Vector Machine (SVM) as a classifier, exploited Unified Medical Language Systems (UMLS) for medical terms extraction, and examined various techniques to resolve the class imbalance issue. Through an empirical study, we demonstrated that soft-margin polynomial SVM achieves better classification performance than the existing algorithms used in current research, and the performance of the classifier can be further improved by using UMLS to identify medical terms in articles and applying re-sampling methods to resolve the class imbalance issue. More... »

PAGES

237-252

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10796-015-9589-7

DOI

http://dx.doi.org/10.1007/s10796-015-9589-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018520860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "College of Business and Information Systems, Dakota State University, 820 N. Washington Avenue, 57042, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timsina", 
        "givenName": "Prem", 
        "id": "sg:person.014402352271.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402352271.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "College of Business and Information Systems, Dakota State University, 820 N. Washington Avenue, 57042, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jun", 
        "id": "sg:person.010456074535.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456074535.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "College of Business and Information Systems, Dakota State University, 820 N. Washington Avenue, 57042, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Gayar", 
        "givenName": "Omar", 
        "id": "sg:person.07602212473.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602212473.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-387-09823-4_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001721707", 
          "https://doi.org/10.1007/978-0-387-09823-4_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-09823-4_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001721707", 
          "https://doi.org/10.1007/978-0-387-09823-4_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m1929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002019499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/00220410410560582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003361631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00044067-200111000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012592943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00044067-200111000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012592943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1882992.1883046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013138351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/225298.225333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014302201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m2996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019912267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m1101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025416176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040209650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2010.004325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045439254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2046-4053-3-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046902330", 
          "https://doi.org/10.1186/2046-4053-3-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050900622", 
          "https://doi.org/10.1186/1471-2105-11-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0026683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051853845", 
          "https://doi.org/10.1007/bfb0026683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrsm.1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052959203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053132543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053402364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.282.7.634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054163941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2008.2007853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.309.6954.597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062769394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.309.6954.597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062769394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0894439309332293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063872710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0894439309332293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063872710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5580/7c9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073000038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077001465", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1572392.1572412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099140302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "While systematic reviews (SRs) are positioned as an essential element of modern evidence-based medical practice, the creation and update of these reviews is resource intensive. In this research, we propose to leverage advanced analytics techniques for automatically classifying articles for inclusion and exclusion for systematic reviews. Specifically, we used soft-margin polynomial Support Vector Machine (SVM) as a classifier, exploited Unified Medical Language Systems (UMLS) for medical terms extraction, and examined various techniques to resolve the class imbalance issue. Through an empirical study, we demonstrated that soft-margin polynomial SVM achieves better classification performance than the existing algorithms used in current research, and the performance of the classifier can be further improved by using UMLS to identify medical terms in articles and applying re-sampling methods to resolve the class imbalance issue.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10796-015-9589-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136609", 
        "issn": [
          "1387-3326", 
          "1572-9419"
        ], 
        "name": "Information Systems Frontiers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Advanced analytics for the automation of medical systematic reviews", 
    "pagination": "237-252", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "583e7496cd279b5a5eb5208aaabd9f8d2af130250a4e09eb89fc7d1e88f1bc5e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10796-015-9589-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018520860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10796-015-9589-7", 
      "https://app.dimensions.ai/details/publication/pub.1018520860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10796-015-9589-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9589-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9589-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9589-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9589-7'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10796-015-9589-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N58a952d88283451fb2cdecef7284c2ab
4 schema:citation sg:pub.10.1007/978-0-387-09823-4_45
5 sg:pub.10.1007/bf00994018
6 sg:pub.10.1007/bfb0026683
7 sg:pub.10.1186/1471-2105-11-55
8 sg:pub.10.1186/2046-4053-3-74
9 https://app.dimensions.ai/details/publication/pub.1077001465
10 https://doi.org/10.1001/jama.282.7.634
11 https://doi.org/10.1002/jrsm.1093
12 https://doi.org/10.1016/j.artmed.2012.05.002
13 https://doi.org/10.1016/j.eswa.2013.08.047
14 https://doi.org/10.1097/00044067-200111000-00009
15 https://doi.org/10.1108/00220410410560582
16 https://doi.org/10.1109/tsmcb.2008.2007853
17 https://doi.org/10.1136/bmj.309.6954.597
18 https://doi.org/10.1136/jamia.2010.004325
19 https://doi.org/10.1145/1882992.1883046
20 https://doi.org/10.1145/225298.225333
21 https://doi.org/10.1162/089976698300017197
22 https://doi.org/10.1177/0894439309332293
23 https://doi.org/10.1197/jamia.m1101
24 https://doi.org/10.1197/jamia.m1929
25 https://doi.org/10.1197/jamia.m2996
26 https://doi.org/10.3115/1572392.1572412
27 https://doi.org/10.5580/7c9
28 schema:datePublished 2016-04
29 schema:datePublishedReg 2016-04-01
30 schema:description While systematic reviews (SRs) are positioned as an essential element of modern evidence-based medical practice, the creation and update of these reviews is resource intensive. In this research, we propose to leverage advanced analytics techniques for automatically classifying articles for inclusion and exclusion for systematic reviews. Specifically, we used soft-margin polynomial Support Vector Machine (SVM) as a classifier, exploited Unified Medical Language Systems (UMLS) for medical terms extraction, and examined various techniques to resolve the class imbalance issue. Through an empirical study, we demonstrated that soft-margin polynomial SVM achieves better classification performance than the existing algorithms used in current research, and the performance of the classifier can be further improved by using UMLS to identify medical terms in articles and applying re-sampling methods to resolve the class imbalance issue.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N8b61ebe4a5364a0cb7ec18ae5c9f89b9
35 Nb96311146ee9431d8596eed2f671f942
36 sg:journal.1136609
37 schema:name Advanced analytics for the automation of medical systematic reviews
38 schema:pagination 237-252
39 schema:productId N9a21a860c5c64450921ebbb037e2fb3a
40 Ndb6da33914934302964fe1d625cfc7ce
41 Nf7c561b723b048669400041dbf1120f5
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018520860
43 https://doi.org/10.1007/s10796-015-9589-7
44 schema:sdDatePublished 2019-04-10T21:36
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Na8f83bf53c444bcab0b475b6647339e5
47 schema:url http://link.springer.com/10.1007%2Fs10796-015-9589-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N58a952d88283451fb2cdecef7284c2ab rdf:first sg:person.014402352271.98
52 rdf:rest Ne107f28455e748808126b781ca503424
53 N8b61ebe4a5364a0cb7ec18ae5c9f89b9 schema:issueNumber 2
54 rdf:type schema:PublicationIssue
55 N91a19f03df3e46b18ba775ca6ea61078 rdf:first sg:person.07602212473.17
56 rdf:rest rdf:nil
57 N9a21a860c5c64450921ebbb037e2fb3a schema:name readcube_id
58 schema:value 583e7496cd279b5a5eb5208aaabd9f8d2af130250a4e09eb89fc7d1e88f1bc5e
59 rdf:type schema:PropertyValue
60 Na8f83bf53c444bcab0b475b6647339e5 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nb96311146ee9431d8596eed2f671f942 schema:volumeNumber 18
63 rdf:type schema:PublicationVolume
64 Ndb6da33914934302964fe1d625cfc7ce schema:name doi
65 schema:value 10.1007/s10796-015-9589-7
66 rdf:type schema:PropertyValue
67 Ne107f28455e748808126b781ca503424 rdf:first sg:person.010456074535.86
68 rdf:rest N91a19f03df3e46b18ba775ca6ea61078
69 Nf7c561b723b048669400041dbf1120f5 schema:name dimensions_id
70 schema:value pub.1018520860
71 rdf:type schema:PropertyValue
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:journal.1136609 schema:issn 1387-3326
79 1572-9419
80 schema:name Information Systems Frontiers
81 rdf:type schema:Periodical
82 sg:person.010456074535.86 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
83 schema:familyName Liu
84 schema:givenName Jun
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456074535.86
86 rdf:type schema:Person
87 sg:person.014402352271.98 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
88 schema:familyName Timsina
89 schema:givenName Prem
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402352271.98
91 rdf:type schema:Person
92 sg:person.07602212473.17 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
93 schema:familyName El-Gayar
94 schema:givenName Omar
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602212473.17
96 rdf:type schema:Person
97 sg:pub.10.1007/978-0-387-09823-4_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001721707
98 https://doi.org/10.1007/978-0-387-09823-4_45
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
101 https://doi.org/10.1007/bf00994018
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bfb0026683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051853845
104 https://doi.org/10.1007/bfb0026683
105 rdf:type schema:CreativeWork
106 sg:pub.10.1186/1471-2105-11-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050900622
107 https://doi.org/10.1186/1471-2105-11-55
108 rdf:type schema:CreativeWork
109 sg:pub.10.1186/2046-4053-3-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046902330
110 https://doi.org/10.1186/2046-4053-3-74
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1077001465 schema:CreativeWork
113 https://doi.org/10.1001/jama.282.7.634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054163941
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/jrsm.1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052959203
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.artmed.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040209650
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.eswa.2013.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053402364
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1097/00044067-200111000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012592943
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1108/00220410410560582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003361631
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tsmcb.2008.2007853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796898
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1136/bmj.309.6954.597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062769394
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1136/jamia.2010.004325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045439254
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/1882992.1883046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013138351
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/225298.225333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014302201
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1177/0894439309332293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063872710
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1197/jamia.m1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025416176
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1197/jamia.m1929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002019499
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1197/jamia.m2996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019912267
144 rdf:type schema:CreativeWork
145 https://doi.org/10.3115/1572392.1572412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099140302
146 rdf:type schema:CreativeWork
147 https://doi.org/10.5580/7c9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073000038
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.254833.b schema:alternateName Dakota State University
150 schema:name College of Business and Information Systems, Dakota State University, 820 N. Washington Avenue, 57042, Madison, SD, USA
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...