Ontology type: schema:ScholarlyArticle
2015-12
AUTHORS ABSTRACTIn highly complex and flexible environments, event logs tend to exhibit high levels of heterogeneity, and clustering-based methods are candidate techniques for simplifying the mined process models from the process observations. To compensate for the information loss occurring during clustering, semantic information from event logs may be extracted and organized in the form of knowledge structures such as process ontologies using methods of ontology learning. In this article, we propose an overall computational framework for event log pre-processing, and then focus on a specific component of the framework, namely event log aggregation. We develop a detailed system architecture for this component, along with an implemented and evaluated research prototype SemAgg. We use phrase-based semantic similarity between normalized event names to aggregate event logs in a hierarchical form. We discuss the practical implications of this work for learning lower level process ontology classes as well as performing further process mining and analytics. More... »
PAGES1209-1226
http://scigraph.springernature.com/pub.10.1007/s10796-015-9563-4
DOIhttp://dx.doi.org/10.1007/s10796-015-9563-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005095575
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Pennsylvania State University",
"id": "https://www.grid.ac/institutes/grid.29857.31",
"name": [
"Sam and Irene Black School of Business, Pennsylvania State University, 5101 Jordan Road, Burke Center 268, 16563, Erie, PA, USA"
],
"type": "Organization"
},
"familyName": "Deokar",
"givenName": "Amit V.",
"id": "sg:person.016674505217.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016674505217.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Fairfield University",
"id": "https://www.grid.ac/institutes/grid.255794.8",
"name": [
"Information Systems and Operations Management (IS&OM) Department, Dolan School of Business, Fairfield University, 1073N. Benson Road, 06824, Fairfield, CT, USA"
],
"type": "Organization"
},
"familyName": "Tao",
"givenName": "Jie",
"id": "sg:person.010151263357.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010151263357.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.3115/981732.981751",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000312622"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-92219-3_32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000460235",
"https://doi.org/10.1007/978-3-540-92219-3_32"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-92219-3_32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000460235",
"https://doi.org/10.1007/978-3-540-92219-3_32"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36456-0_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001746929",
"https://doi.org/10.1007/3-540-36456-0_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36456-0_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001746929",
"https://doi.org/10.1007/3-540-36456-0_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-75183-0_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002709909",
"https://doi.org/10.1007/978-3-540-75183-0_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-75183-0_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002709909",
"https://doi.org/10.1007/978-3-540-75183-0_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-03848-8_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005628088",
"https://doi.org/10.1007/978-3-642-03848-8_12"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1454008.1454048",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006414061"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.is.2012.05.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006448627"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1108/14637151311319905",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010141847"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10844-009-0103-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014242761",
"https://doi.org/10.1007/s10844-009-0103-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10844-009-0103-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014242761",
"https://doi.org/10.1007/s10844-009-0103-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compind.2003.10.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016254915"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11837862_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018860395",
"https://doi.org/10.1007/11837862_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11837862_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018860395",
"https://doi.org/10.1007/11837862_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1002674829964",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020803675",
"https://doi.org/10.1023/a:1002674829964"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.dss.2008.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021486559"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0269888903000687",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021858997"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12186-9_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022829384",
"https://doi.org/10.1007/978-3-642-12186-9_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12186-9_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022829384",
"https://doi.org/10.1007/978-3-642-12186-9_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-78238-4_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025186835",
"https://doi.org/10.1007/978-3-540-78238-4_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-78238-4_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025186835",
"https://doi.org/10.1007/978-3-540-78238-4_4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1108/14637150810849373",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030845762"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.datak.2011.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032158088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-76890-6_52",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032887159",
"https://doi.org/10.1007/978-3-540-76890-6_52"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-76890-6_52",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032887159",
"https://doi.org/10.1007/978-3-540-76890-6_52"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.is.2006.05.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033060034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10799-010-0076-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033634566",
"https://doi.org/10.1007/s10799-010-0076-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.dss.2010.02.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035321057"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1459352.1459355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035414632"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30188-2_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036621469",
"https://doi.org/10.1007/978-3-540-30188-2_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30188-2_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036621469",
"https://doi.org/10.1007/978-3-540-30188-2_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30475-3_43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039198264",
"https://doi.org/10.1007/978-3-540-30475-3_43"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30475-3_43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039198264",
"https://doi.org/10.1007/978-3-540-30475-3_43"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-48713-5_29",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039773032",
"https://doi.org/10.1007/978-3-540-48713-5_29"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-48713-5_29",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039773032",
"https://doi.org/10.1007/978-3-540-48713-5_29"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-31095-9_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045024240",
"https://doi.org/10.1007/978-3-642-31095-9_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-35602-0_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047834723",
"https://doi.org/10.1007/978-0-387-35602-0_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-00328-8_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051634441",
"https://doi.org/10.1007/978-3-642-00328-8_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10618-006-0061-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051962035",
"https://doi.org/10.1007/s10618-006-0061-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1983.10478008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058302869"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2006.123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061661511"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2006.123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061661511"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2006.123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061661511"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2010.163",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061662161"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2011.17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061662361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmca.2012.2195169",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061795896"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1504/ijbpim.2012.047909",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067438584"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1217208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069398467"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3115/1614025.1614037",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099150957"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-12",
"datePublishedReg": "2015-12-01",
"description": "In highly complex and flexible environments, event logs tend to exhibit high levels of heterogeneity, and clustering-based methods are candidate techniques for simplifying the mined process models from the process observations. To compensate for the information loss occurring during clustering, semantic information from event logs may be extracted and organized in the form of knowledge structures such as process ontologies using methods of ontology learning. In this article, we propose an overall computational framework for event log pre-processing, and then focus on a specific component of the framework, namely event log aggregation. We develop a detailed system architecture for this component, along with an implemented and evaluated research prototype SemAgg. We use phrase-based semantic similarity between normalized event names to aggregate event logs in a hierarchical form. We discuss the practical implications of this work for learning lower level process ontology classes as well as performing further process mining and analytics.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10796-015-9563-4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136609",
"issn": [
"1387-3326",
"1572-9419"
],
"name": "Information Systems Frontiers",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"name": "Semantics-based event log aggregation for process mining and analytics",
"pagination": "1209-1226",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"18472b8a750ad901b9673adaf455cd927ae7183bd280e9b195a7b2d0420e0f47"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10796-015-9563-4"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005095575"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10796-015-9563-4",
"https://app.dimensions.ai/details/publication/pub.1005095575"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000510.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10796-015-9563-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9563-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9563-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9563-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10796-015-9563-4'
This table displays all metadata directly associated to this object as RDF triples.
203 TRIPLES
21 PREDICATES
65 URIs
19 LITERALS
7 BLANK NODES