A systematic approach to normalization in probabilistic models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Aldo Lipani, Thomas Roelleke, Mihai Lupu, Allan Hanbury

ABSTRACT

Every information retrieval (IR) model embeds in its scoring function a form of term frequency (TF) quantification. The contribution of the term frequency is determined by the properties of the function of the chosen TF quantification, and by its TF normalization. The first defines how independent the occurrences of multiple terms are, while the second acts on mitigating the a priori probability of having a high term frequency in a document (estimation usually based on the document length). New test collections, coming from different domains (e.g. medical, legal), give evidence that not only document length, but in addition, verboseness of documents should be explicitly considered. Therefore we propose and investigate a systematic combination of document verboseness and length. To theoretically justify the combination, we show the duality between document verboseness and length. In addition, we investigate the duality between verboseness and other components of IR models. We test these new TF normalizations on four suitable test collections. We do this on a well defined spectrum of TF quantifications. Finally, based on the theoretical and experimental observations, we show how the two components of this new normalization, document verboseness and length, interact with each other. Our experiments demonstrate that the new models never underperform existing models, while sometimes introducing statistically significantly better results, at no additional computational cost. More... »

PAGES

565-596

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10791-018-9334-1

DOI

http://dx.doi.org/10.1007/s10791-018-9334-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105225127

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30416369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lipani", 
        "givenName": "Aldo", 
        "id": "sg:person.013447241002.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447241002.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Queen Mary University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roelleke", 
        "givenName": "Thomas", 
        "id": "sg:person.013201433525.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013201433525.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Studios Austria", 
          "id": "https://www.grid.ac/institutes/grid.437601.7", 
          "name": [
            "Research Studios Austria, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupu", 
        "givenName": "Mihai", 
        "id": "sg:person.012217740263.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217740263.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "TU Wien, Vienna, Austria", 
            "Complexity Science Hub, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanbury", 
        "givenName": "Allan", 
        "id": "sg:person.012142237335.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142237335.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1076034.1076114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005050270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1008992.1009004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016180918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2390-9_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017473892", 
          "https://doi.org/10.1007/978-94-017-2390-9_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2063871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019431066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/383952.384019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019714596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2808194.2809486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021443606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78646-7_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026697186", 
          "https://doi.org/10.1007/978-3-540-78646-7_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78646-7_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026697186", 
          "https://doi.org/10.1007/978-3-540-78646-7_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2063584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029719387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031215374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/243199.243206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032416718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956863.956867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039998910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2009916.2010070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040955144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2484028.2484121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041485786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/582415.582416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041903840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31865-1_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044121277", 
          "https://doi.org/10.1007/978-3-540-31865-1_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31865-1_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044121277", 
          "https://doi.org/10.1007/978-3-540-31865-1_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1458082.1458137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044373275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/bxv031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059480822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/1500000019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2200/s00494ed1v01y201304icr027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069288376"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Every information retrieval (IR) model embeds in its scoring function a form of term frequency (TF) quantification. The contribution of the term frequency is determined by the properties of the function of the chosen TF quantification, and by its TF normalization. The first defines how independent the occurrences of multiple terms are, while the second acts on mitigating the a priori probability of having a high term frequency in a document (estimation usually based on the document length). New test collections, coming from different domains (e.g.\u00a0medical, legal), give evidence that not only document length, but in addition, verboseness of documents should be explicitly considered. Therefore we propose and investigate a systematic combination of document verboseness and length. To theoretically justify the combination, we show the duality between document verboseness and length. In addition, we investigate the duality between verboseness and other components of IR models. We test these new TF normalizations on four suitable test collections. We do this on a well defined spectrum of TF quantifications. Finally, based on the theoretical and experimental observations, we show how the two components of this new normalization, document verboseness and length, interact with each other. Our experiments demonstrate that the new models never underperform existing models, while sometimes introducing statistically significantly better results, at no additional computational cost.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10791-018-9334-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6207023", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023664", 
        "issn": [
          "1386-4564", 
          "1573-7659"
        ], 
        "name": "Information Retrieval Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A systematic approach to normalization in probabilistic models", 
    "pagination": "565-596", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d4b56932f5cf0d944e2acec1d4a6590fa58d0b06cfff557ef2c8e4dab9f613a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30416369"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100963218"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10791-018-9334-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105225127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10791-018-9334-1", 
      "https://app.dimensions.ai/details/publication/pub.1105225127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10791-018-9334-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10791-018-9334-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10791-018-9334-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10791-018-9334-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10791-018-9334-1'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10791-018-9334-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf5f249676a074b43b84a8dd9654079a7
4 schema:citation sg:pub.10.1007/978-3-540-31865-1_15
5 sg:pub.10.1007/978-3-540-78646-7_35
6 sg:pub.10.1007/978-94-017-2390-9_18
7 https://doi.org/10.1016/0306-4573(88)90021-0
8 https://doi.org/10.1093/comjnl/bxv031
9 https://doi.org/10.1145/1008992.1009004
10 https://doi.org/10.1145/1076034.1076114
11 https://doi.org/10.1145/1390334.1390409
12 https://doi.org/10.1145/1458082.1458137
13 https://doi.org/10.1145/2009916.2010070
14 https://doi.org/10.1145/2063576.2063584
15 https://doi.org/10.1145/2063576.2063871
16 https://doi.org/10.1145/243199.243206
17 https://doi.org/10.1145/2484028.2484121
18 https://doi.org/10.1145/2808194.2809486
19 https://doi.org/10.1145/383952.384019
20 https://doi.org/10.1145/582415.582416
21 https://doi.org/10.1145/956863.956867
22 https://doi.org/10.1561/1500000019
23 https://doi.org/10.2200/s00494ed1v01y201304icr027
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description Every information retrieval (IR) model embeds in its scoring function a form of term frequency (TF) quantification. The contribution of the term frequency is determined by the properties of the function of the chosen TF quantification, and by its TF normalization. The first defines how independent the occurrences of multiple terms are, while the second acts on mitigating the a priori probability of having a high term frequency in a document (estimation usually based on the document length). New test collections, coming from different domains (e.g. medical, legal), give evidence that not only document length, but in addition, verboseness of documents should be explicitly considered. Therefore we propose and investigate a systematic combination of document verboseness and length. To theoretically justify the combination, we show the duality between document verboseness and length. In addition, we investigate the duality between verboseness and other components of IR models. We test these new TF normalizations on four suitable test collections. We do this on a well defined spectrum of TF quantifications. Finally, based on the theoretical and experimental observations, we show how the two components of this new normalization, document verboseness and length, interact with each other. Our experiments demonstrate that the new models never underperform existing models, while sometimes introducing statistically significantly better results, at no additional computational cost.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N68ec9e2b083e43e582f03782170b7970
31 Ncb2ad2cb6f53454aa24d22721f3b3f14
32 sg:journal.1023664
33 schema:name A systematic approach to normalization in probabilistic models
34 schema:pagination 565-596
35 schema:productId N2ee48409b0b14750ae6397f2ec5be72e
36 N381bec5f92be4475a19b440078aa037d
37 Nce67a37b5e024d8993e28e42389e4c4b
38 Ne11109543af543929d80f777bfd4bd70
39 Nfba088ae768442ff951aa44a932ec1f5
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105225127
41 https://doi.org/10.1007/s10791-018-9334-1
42 schema:sdDatePublished 2019-04-10T19:22
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N070f74cc64124c15beaea77bedf42670
45 schema:url https://link.springer.com/10.1007%2Fs10791-018-9334-1
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N06f9955ced7245c3a12d95ec48384543 rdf:first sg:person.012142237335.77
50 rdf:rest rdf:nil
51 N070f74cc64124c15beaea77bedf42670 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N2e975b7745f34c1195a39f62fd20a5d9 rdf:first sg:person.012217740263.45
54 rdf:rest N06f9955ced7245c3a12d95ec48384543
55 N2ee48409b0b14750ae6397f2ec5be72e schema:name readcube_id
56 schema:value 8d4b56932f5cf0d944e2acec1d4a6590fa58d0b06cfff557ef2c8e4dab9f613a
57 rdf:type schema:PropertyValue
58 N381bec5f92be4475a19b440078aa037d schema:name pubmed_id
59 schema:value 30416369
60 rdf:type schema:PropertyValue
61 N68ec9e2b083e43e582f03782170b7970 schema:issueNumber 6
62 rdf:type schema:PublicationIssue
63 Ncb2ad2cb6f53454aa24d22721f3b3f14 schema:volumeNumber 21
64 rdf:type schema:PublicationVolume
65 Nce67a37b5e024d8993e28e42389e4c4b schema:name doi
66 schema:value 10.1007/s10791-018-9334-1
67 rdf:type schema:PropertyValue
68 Ne11109543af543929d80f777bfd4bd70 schema:name nlm_unique_id
69 schema:value 100963218
70 rdf:type schema:PropertyValue
71 Nf5f249676a074b43b84a8dd9654079a7 rdf:first sg:person.013447241002.78
72 rdf:rest Nfb7dc2b35bd44280bfdb9fffb91f2c35
73 Nfb7dc2b35bd44280bfdb9fffb91f2c35 rdf:first sg:person.013201433525.29
74 rdf:rest N2e975b7745f34c1195a39f62fd20a5d9
75 Nfba088ae768442ff951aa44a932ec1f5 schema:name dimensions_id
76 schema:value pub.1105225127
77 rdf:type schema:PropertyValue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:grant.6207023 http://pending.schema.org/fundedItem sg:pub.10.1007/s10791-018-9334-1
85 rdf:type schema:MonetaryGrant
86 sg:journal.1023664 schema:issn 1386-4564
87 1573-7659
88 schema:name Information Retrieval Journal
89 rdf:type schema:Periodical
90 sg:person.012142237335.77 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
91 schema:familyName Hanbury
92 schema:givenName Allan
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142237335.77
94 rdf:type schema:Person
95 sg:person.012217740263.45 schema:affiliation https://www.grid.ac/institutes/grid.437601.7
96 schema:familyName Lupu
97 schema:givenName Mihai
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217740263.45
99 rdf:type schema:Person
100 sg:person.013201433525.29 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
101 schema:familyName Roelleke
102 schema:givenName Thomas
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013201433525.29
104 rdf:type schema:Person
105 sg:person.013447241002.78 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
106 schema:familyName Lipani
107 schema:givenName Aldo
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447241002.78
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-540-31865-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044121277
111 https://doi.org/10.1007/978-3-540-31865-1_15
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-540-78646-7_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026697186
114 https://doi.org/10.1007/978-3-540-78646-7_35
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-94-017-2390-9_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017473892
117 https://doi.org/10.1007/978-94-017-2390-9_18
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0306-4573(88)90021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478827
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/comjnl/bxv031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059480822
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1145/1008992.1009004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180918
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/1076034.1076114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005050270
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1390334.1390409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031215374
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1458082.1458137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044373275
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/2009916.2010070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040955144
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/2063576.2063584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029719387
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/2063576.2063871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019431066
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/243199.243206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032416718
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/2484028.2484121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041485786
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/2808194.2809486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021443606
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/383952.384019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019714596
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/582415.582416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041903840
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/956863.956867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039998910
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1561/1500000019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001284
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2200/s00494ed1v01y201304icr027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069288376
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.437601.7 schema:alternateName Research Studios Austria
154 schema:name Research Studios Austria, Vienna, Austria
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.484678.1 schema:alternateName Complexity Science Hub Vienna
157 schema:name Complexity Science Hub, Vienna, Austria
158 TU Wien, Vienna, Austria
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
161 schema:name Queen Mary University of London, London, UK
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
164 schema:name TU Wien, Vienna, Austria
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...