LETOR: A benchmark collection for research on learning to rank for information retrieval View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08

AUTHORS

Tao Qin, Tie-Yan Liu, Jun Xu, Hang Li

ABSTRACT

LETOR is a benchmark collection for the research on learning to rank for information retrieval, released by Microsoft Research Asia. In this paper, we describe the details of the LETOR collection and show how it can be used in different kinds of researches. Specifically, we describe how the document corpora and query sets in LETOR are selected, how the documents are sampled, how the learning features and meta information are extracted, and how the datasets are partitioned for comprehensive evaluation. We then compare several state-of-the-art learning to rank algorithms on LETOR, report their ranking performances, and make discussions on the results. After that, we discuss possible new research topics that can be supported by LETOR, in addition to algorithm comparison. We hope that this paper can help people to gain deeper understanding of LETOR, and enable more interesting research projects on learning to rank and related topics. More... »

PAGES

346-374

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10791-009-9123-y

DOI

http://dx.doi.org/10.1007/s10791-009-9123-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040052022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microsoft Research Asia (China)", 
          "id": "https://www.grid.ac/institutes/grid.466946.f", 
          "name": [
            "Microsoft Research Asia, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Tao", 
        "id": "sg:person.014123601407.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014123601407.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research Asia (China)", 
          "id": "https://www.grid.ac/institutes/grid.466946.f", 
          "name": [
            "Microsoft Research Asia, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Tie-Yan", 
        "id": "sg:person.012253744132.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012253744132.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research Asia (China)", 
          "id": "https://www.grid.ac/institutes/grid.466946.f", 
          "name": [
            "Microsoft Research Asia, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Jun", 
        "id": "sg:person.015523611473.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015523611473.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research Asia (China)", 
          "id": "https://www.grid.ac/institutes/grid.466946.f", 
          "name": [
            "Microsoft Research Asia, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hang", 
        "id": "sg:person.015604412325.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015604412325.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1277741.1277809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001815339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2007.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001995264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002194678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1341531.1341544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003319140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1076034.1076079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003858672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004614284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2099-5_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949989", 
          "https://doi.org/10.1007/978-1-4471-2099-5_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1273496.1273513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015815450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1277741.1277791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1148170.1148246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018816573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/383952.384019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019714596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020175594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1367497.1367553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1102351.1102363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025364122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1553374.1553513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028467448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1148170.1148189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1277741.1277790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031583975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1277741.1277808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033673639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012088469-8.50052-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034680052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7552(98)00110-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035913093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1099554.1099671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036213502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1076034.1076105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036718339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1031171.1031181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036793541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037595200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775152.775226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043544321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/860435.860440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045180519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1062745.1062761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050174766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/582415.582418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050459672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp:19991091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098690022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1219840.1219855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1219840.1219855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221859"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "LETOR is a benchmark collection for the research on learning to rank for information retrieval, released by Microsoft Research Asia. In this paper, we describe the details of the LETOR collection and show how it can be used in different kinds of researches. Specifically, we describe how the document corpora and query sets in LETOR are selected, how the documents are sampled, how the learning features and meta information are extracted, and how the datasets are partitioned for comprehensive evaluation. We then compare several state-of-the-art learning to rank algorithms on LETOR, report their ranking performances, and make discussions on the results. After that, we discuss possible new research topics that can be supported by LETOR, in addition to algorithm comparison. We hope that this paper can help people to gain deeper understanding of LETOR, and enable more interesting research projects on learning to rank and related topics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10791-009-9123-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023664", 
        "issn": [
          "1386-4564", 
          "1573-7659"
        ], 
        "name": "Information Retrieval Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "LETOR: A benchmark collection for research on learning to rank for information retrieval", 
    "pagination": "346-374", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "becb38d8f00ed166257d63192f6a48b275d1354e7198fc1baab5f8e1cadbeae8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10791-009-9123-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040052022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10791-009-9123-y", 
      "https://app.dimensions.ai/details/publication/pub.1040052022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10791-009-9123-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10791-009-9123-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10791-009-9123-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10791-009-9123-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10791-009-9123-y'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10791-009-9123-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0fa988ebdc0c4430ad3d0dbe640acea1
4 schema:citation sg:pub.10.1007/978-1-4471-2099-5_20
5 https://doi.org/10.1016/b978-012088469-8.50052-8
6 https://doi.org/10.1016/j.ipm.2007.07.016
7 https://doi.org/10.1016/s0169-7552(98)00110-x
8 https://doi.org/10.1049/cp:19991091
9 https://doi.org/10.1145/1031171.1031181
10 https://doi.org/10.1145/1062745.1062761
11 https://doi.org/10.1145/1076034.1076079
12 https://doi.org/10.1145/1076034.1076105
13 https://doi.org/10.1145/1099554.1099671
14 https://doi.org/10.1145/1102351.1102363
15 https://doi.org/10.1145/1148170.1148189
16 https://doi.org/10.1145/1148170.1148246
17 https://doi.org/10.1145/1273496.1273513
18 https://doi.org/10.1145/1277741.1277790
19 https://doi.org/10.1145/1277741.1277791
20 https://doi.org/10.1145/1277741.1277808
21 https://doi.org/10.1145/1277741.1277809
22 https://doi.org/10.1145/1341531.1341544
23 https://doi.org/10.1145/1367497.1367553
24 https://doi.org/10.1145/1390156.1390306
25 https://doi.org/10.1145/1390334.1390355
26 https://doi.org/10.1145/1390334.1390356
27 https://doi.org/10.1145/1553374.1553513
28 https://doi.org/10.1145/383952.384019
29 https://doi.org/10.1145/582415.582418
30 https://doi.org/10.1145/775047.775067
31 https://doi.org/10.1145/775152.775226
32 https://doi.org/10.1145/860435.860440
33 https://doi.org/10.3115/1219840.1219855
34 schema:datePublished 2010-08
35 schema:datePublishedReg 2010-08-01
36 schema:description LETOR is a benchmark collection for the research on learning to rank for information retrieval, released by Microsoft Research Asia. In this paper, we describe the details of the LETOR collection and show how it can be used in different kinds of researches. Specifically, we describe how the document corpora and query sets in LETOR are selected, how the documents are sampled, how the learning features and meta information are extracted, and how the datasets are partitioned for comprehensive evaluation. We then compare several state-of-the-art learning to rank algorithms on LETOR, report their ranking performances, and make discussions on the results. After that, we discuss possible new research topics that can be supported by LETOR, in addition to algorithm comparison. We hope that this paper can help people to gain deeper understanding of LETOR, and enable more interesting research projects on learning to rank and related topics.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N1dad1c667c3140c28e648e45888a7e47
41 N30686a441b1e4e96ae16c39212d00e06
42 sg:journal.1023664
43 schema:name LETOR: A benchmark collection for research on learning to rank for information retrieval
44 schema:pagination 346-374
45 schema:productId N1311f131da2747c98644581245501fac
46 N1773475562134ea7b7a89792d4f5d407
47 Nacf5f44046fd4e0ca300b7b02b251e98
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040052022
49 https://doi.org/10.1007/s10791-009-9123-y
50 schema:sdDatePublished 2019-04-11T09:58
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N41c607b778a74647bffc52af867e3175
53 schema:url http://link.springer.com/10.1007%2Fs10791-009-9123-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0fa988ebdc0c4430ad3d0dbe640acea1 rdf:first sg:person.014123601407.27
58 rdf:rest N4739da4cd50f4d1c8c914f5878d92f57
59 N1311f131da2747c98644581245501fac schema:name doi
60 schema:value 10.1007/s10791-009-9123-y
61 rdf:type schema:PropertyValue
62 N1773475562134ea7b7a89792d4f5d407 schema:name readcube_id
63 schema:value becb38d8f00ed166257d63192f6a48b275d1354e7198fc1baab5f8e1cadbeae8
64 rdf:type schema:PropertyValue
65 N1dad1c667c3140c28e648e45888a7e47 schema:volumeNumber 13
66 rdf:type schema:PublicationVolume
67 N21d12d90532148cd9542596e717bb35b rdf:first sg:person.015523611473.79
68 rdf:rest N6c2dec8672dd4045bfcc4bf08716bbd6
69 N30686a441b1e4e96ae16c39212d00e06 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 N41c607b778a74647bffc52af867e3175 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N4739da4cd50f4d1c8c914f5878d92f57 rdf:first sg:person.012253744132.87
74 rdf:rest N21d12d90532148cd9542596e717bb35b
75 N6c2dec8672dd4045bfcc4bf08716bbd6 rdf:first sg:person.015604412325.38
76 rdf:rest rdf:nil
77 Nacf5f44046fd4e0ca300b7b02b251e98 schema:name dimensions_id
78 schema:value pub.1040052022
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1023664 schema:issn 1386-4564
87 1573-7659
88 schema:name Information Retrieval Journal
89 rdf:type schema:Periodical
90 sg:person.012253744132.87 schema:affiliation https://www.grid.ac/institutes/grid.466946.f
91 schema:familyName Liu
92 schema:givenName Tie-Yan
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012253744132.87
94 rdf:type schema:Person
95 sg:person.014123601407.27 schema:affiliation https://www.grid.ac/institutes/grid.466946.f
96 schema:familyName Qin
97 schema:givenName Tao
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014123601407.27
99 rdf:type schema:Person
100 sg:person.015523611473.79 schema:affiliation https://www.grid.ac/institutes/grid.466946.f
101 schema:familyName Xu
102 schema:givenName Jun
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015523611473.79
104 rdf:type schema:Person
105 sg:person.015604412325.38 schema:affiliation https://www.grid.ac/institutes/grid.466946.f
106 schema:familyName Li
107 schema:givenName Hang
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015604412325.38
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4471-2099-5_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949989
111 https://doi.org/10.1007/978-1-4471-2099-5_20
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/b978-012088469-8.50052-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034680052
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ipm.2007.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001995264
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0169-7552(98)00110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035913093
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1049/cp:19991091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098690022
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/1031171.1031181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036793541
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1145/1062745.1062761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050174766
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/1076034.1076079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003858672
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1076034.1076105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036718339
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1099554.1099671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036213502
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/1102351.1102363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025364122
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/1148170.1148189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304985
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/1148170.1148246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018816573
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/1273496.1273513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815450
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/1277741.1277790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031583975
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/1277741.1277791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807646
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/1277741.1277808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033673639
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1277741.1277809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001815339
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1341531.1341544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003319140
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/1367497.1367553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408237
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/1390156.1390306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004614284
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/1390334.1390355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037595200
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/1390334.1390356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020175594
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/1553374.1553513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028467448
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/383952.384019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019714596
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/582415.582418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050459672
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/775047.775067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002194678
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/775152.775226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043544321
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/860435.860440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045180519
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3115/1219840.1219855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221859
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.466946.f schema:alternateName Microsoft Research Asia (China)
172 schema:name Microsoft Research Asia, Beijing, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...