Solving the System of Sylvester Matrix Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-27

AUTHORS

F. A. Aliev, V. B. Larin

ABSTRACT

Constrained Sylvester-type matrix equations are considered. These equations arise in using the Newton method to solve a nonsymmetric Riccati equations with constrains. A procedure of decomposing the original system of Sylvester-type matrix equations is proposed. This procedure allows solving the original system using standard Matlab routines. The efficiency of an algorithm based on the decomposition procedure is demonstrated against a numerical example. More... »

PAGES

1-6

References to SciGraph publications

  • 2017-01. Correcting the Parameters of Undamped Mechanical Systems in INTERNATIONAL APPLIED MECHANICS
  • 2017-09. Control of a Wheeled Transport Robot with Two Steerable Wheels in INTERNATIONAL APPLIED MECHANICS
  • 2017-05. On Problem of Synthesis of Control System for Quadrocopter in INTERNATIONAL APPLIED MECHANICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10778-018-0915-x

    DOI

    http://dx.doi.org/10.1007/s10778-018-0915-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107880637


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Baku State University", 
              "id": "https://www.grid.ac/institutes/grid.37600.32", 
              "name": [
                "Institute of Applied Mathematics of the Baku State University, 23 Khalilova St., AZ 1148, Baku, Azerbaijan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aliev", 
            "givenName": "F. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "S.P.Timoshenko Institute of Mechanics", 
              "id": "https://www.grid.ac/institutes/grid.473722.7", 
              "name": [
                "S. P. Timoshenko Institute of Mechanics, Ukrainian National Academy of Sciences, 3 Nesterova St., 03057, Kyiv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Larin", 
            "givenName": "V. B.", 
            "id": "sg:person.011335500473.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335500473.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10778-017-0795-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084864777", 
              "https://doi.org/10.1007/s10778-017-0795-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10778-017-0795-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084864777", 
              "https://doi.org/10.1007/s10778-017-0795-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10778-017-0816-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091600211", 
              "https://doi.org/10.1007/s10778-017-0816-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10778-017-0842-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093138541", 
              "https://doi.org/10.1007/s10778-017-0842-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098556247"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-27", 
        "datePublishedReg": "2018-10-27", 
        "description": "Constrained Sylvester-type matrix equations are considered. These equations arise in using the Newton method to solve a nonsymmetric Riccati equations with constrains. A procedure of decomposing the original system of Sylvester-type matrix equations is proposed. This procedure allows solving the original system using standard Matlab routines. The efficiency of an algorithm based on the decomposition procedure is demonstrated against a numerical example.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10778-018-0915-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313805", 
            "issn": [
              "1063-7095", 
              "1573-8582"
            ], 
            "name": "International Applied Mechanics", 
            "type": "Periodical"
          }
        ], 
        "name": "Solving the System of Sylvester Matrix Equations", 
        "pagination": "1-6", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "46783c13c8eda093d9608e0e5a4acc2bc816e6888823930608d240b0d328941f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10778-018-0915-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107880637"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10778-018-0915-x", 
          "https://app.dimensions.ai/details/publication/pub.1107880637"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000572.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10778-018-0915-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10778-018-0915-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10778-018-0915-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10778-018-0915-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10778-018-0915-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    79 TRIPLES      21 PREDICATES      28 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10778-018-0915-x schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N52dcd2d94610447ab624da169b24c36c
    4 schema:citation sg:pub.10.1007/s10778-017-0795-5
    5 sg:pub.10.1007/s10778-017-0816-4
    6 sg:pub.10.1007/s10778-017-0842-2
    7 https://doi.org/10.1137/1.9781611970777
    8 schema:datePublished 2018-10-27
    9 schema:datePublishedReg 2018-10-27
    10 schema:description Constrained Sylvester-type matrix equations are considered. These equations arise in using the Newton method to solve a nonsymmetric Riccati equations with constrains. A procedure of decomposing the original system of Sylvester-type matrix equations is proposed. This procedure allows solving the original system using standard Matlab routines. The efficiency of an algorithm based on the decomposition procedure is demonstrated against a numerical example.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf sg:journal.1313805
    15 schema:name Solving the System of Sylvester Matrix Equations
    16 schema:pagination 1-6
    17 schema:productId N6eeb10f4f22e4608a78632105c8e73ae
    18 N9248106cdef44b5cb708a8269a0e2a82
    19 Nd1238361d97a494292f995be6911f217
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107880637
    21 https://doi.org/10.1007/s10778-018-0915-x
    22 schema:sdDatePublished 2019-04-10T13:28
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N5c065f6ce19446c1a55306cbfd46bbb2
    25 schema:url https://link.springer.com/10.1007%2Fs10778-018-0915-x
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N52dcd2d94610447ab624da169b24c36c rdf:first Nac0a06e451e2492082f3f087dbf2b032
    30 rdf:rest N7ca0e4938d9f4d7baba5cd670b6328c1
    31 N5c065f6ce19446c1a55306cbfd46bbb2 schema:name Springer Nature - SN SciGraph project
    32 rdf:type schema:Organization
    33 N6eeb10f4f22e4608a78632105c8e73ae schema:name doi
    34 schema:value 10.1007/s10778-018-0915-x
    35 rdf:type schema:PropertyValue
    36 N7ca0e4938d9f4d7baba5cd670b6328c1 rdf:first sg:person.011335500473.15
    37 rdf:rest rdf:nil
    38 N9248106cdef44b5cb708a8269a0e2a82 schema:name dimensions_id
    39 schema:value pub.1107880637
    40 rdf:type schema:PropertyValue
    41 Nac0a06e451e2492082f3f087dbf2b032 schema:affiliation https://www.grid.ac/institutes/grid.37600.32
    42 schema:familyName Aliev
    43 schema:givenName F. A.
    44 rdf:type schema:Person
    45 Nd1238361d97a494292f995be6911f217 schema:name readcube_id
    46 schema:value 46783c13c8eda093d9608e0e5a4acc2bc816e6888823930608d240b0d328941f
    47 rdf:type schema:PropertyValue
    48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Mathematical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Numerical and Computational Mathematics
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1313805 schema:issn 1063-7095
    55 1573-8582
    56 schema:name International Applied Mechanics
    57 rdf:type schema:Periodical
    58 sg:person.011335500473.15 schema:affiliation https://www.grid.ac/institutes/grid.473722.7
    59 schema:familyName Larin
    60 schema:givenName V. B.
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335500473.15
    62 rdf:type schema:Person
    63 sg:pub.10.1007/s10778-017-0795-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084864777
    64 https://doi.org/10.1007/s10778-017-0795-5
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/s10778-017-0816-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091600211
    67 https://doi.org/10.1007/s10778-017-0816-4
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1007/s10778-017-0842-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093138541
    70 https://doi.org/10.1007/s10778-017-0842-2
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1137/1.9781611970777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556247
    73 rdf:type schema:CreativeWork
    74 https://www.grid.ac/institutes/grid.37600.32 schema:alternateName Baku State University
    75 schema:name Institute of Applied Mathematics of the Baku State University, 23 Khalilova St., AZ 1148, Baku, Azerbaijan
    76 rdf:type schema:Organization
    77 https://www.grid.ac/institutes/grid.473722.7 schema:alternateName S.P.Timoshenko Institute of Mechanics
    78 schema:name S. P. Timoshenko Institute of Mechanics, Ukrainian National Academy of Sciences, 3 Nesterova St., 03057, Kyiv, Ukraine
    79 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...