Effect of Quantum Noise on Teleportation of an Arbitrary Single-Qubit State via a Triparticle W State View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-01-30

AUTHORS

Liang-Ming He, Nong Wang, Ping Zhou

ABSTRACT

Using a three-particle W state as the quantum channel, we investigate the teleportation of an arbitrary single-qubit state in noisy environments. The influence of different noises on the process of teleporation of an arbitrary single-qubit state with a three-particle W state is considered by analytically derivation and calculations of the fidelities of the teleportation. The single-qubit teleportation fidelity was derived and computed numberically in the case of teleportation through a triparticle W state in which the sender’s entangled qubit is interacted to environment during the process of entanglement distribution and the receiver’s entangled particle is rotated to optimize the teleportation fidelity. It is shown that the fidelity of single-qubit teleportation through a strong bit flipping or bit-phase flipping environment can be enhanced by rotating the entangled particle about x-axis or y-axis. While such effect does not appear in quantum teleportation when rotating an entangled particle of Bell state under a strong bit-phase flipping environment. More... »

PAGES

1081-1098

References to SciGraph publications

  • 2012-08-30. Improved Protocols of Secure Quantum Communication Using W States in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2014-11-04. Bidirectional Controlled Remote Implementation of an Arbitrary Single Qubit Unitary Operation with EPR and Cluster States in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2017-10-27. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2007-07. Quantum secure direct communication and deterministic secure quantum communication in FRONTIERS OF PHYSICS
  • 2014-06-18. Quantum teleportation through noisy channels with multi-qubit GHZ states in QUANTUM INFORMATION PROCESSING
  • 2015-07-30. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities in SCIENTIFIC REPORTS
  • 2017-11-08. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels in QUANTUM INFORMATION PROCESSING
  • 2017-04-11. Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state in QUANTUM INFORMATION PROCESSING
  • 2016-07-05. Purification of Logic-Qubit Entanglement in SCIENTIFIC REPORTS
  • 2015-08-02. Effects of noises on joint remote state preparation via a GHZ-class channel in QUANTUM INFORMATION PROCESSING
  • 2015-06-21. Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments in QUANTUM INFORMATION PROCESSING
  • 2017-11-30. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel in QUANTUM INFORMATION PROCESSING
  • 2013-11-22. Quantum Teleportation with Remote Rotation on a GHZ State in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2019-03-20. Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements in SCIENTIFIC REPORTS
  • 2016-01-25. Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity in QUANTUM INFORMATION PROCESSING
  • 2014-01-28. Joint Remote Preparation of an Arbitrary Two-Qubit State in Noisy Environments in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2018-09-25. Parallel remote state preparation of arbitrary single-qubit states via linear-optical elements by using hyperentangled Bell states as the quantum channel in QUANTUM INFORMATION PROCESSING
  • 2019-02-22. Controlled teleportation of an arbitrary two-qubit entanglement in noises environment in QUANTUM INFORMATION PROCESSING
  • 2016-08-31. Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel in QUANTUM INFORMATION PROCESSING
  • 2017-01-06. Controlled Remote Implementation of an Arbitrary Single-Qubit Operation with Partially Entangled Quantum Channel in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2015-11-26. Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments in QUANTUM INFORMATION PROCESSING
  • 2017-02-23. Deterministic remote preparation via the Brown state in QUANTUM INFORMATION PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10773-020-04390-8

    DOI

    http://dx.doi.org/10.1007/s10773-020-04390-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124434029


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.411860.a", 
              "name": [
                "College of Science, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China", 
                "Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China", 
                "Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Liang-Ming", 
            "id": "sg:person.013631002471.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013631002471.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.411290.f", 
              "name": [
                "School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Nong", 
            "id": "sg:person.014105676141.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105676141.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.411860.a", 
              "name": [
                "College of Science, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China", 
                "Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, 530006, Nanning, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Ping", 
            "id": "sg:person.015002545271.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015002545271.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11128-015-1194-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048488058", 
              "https://doi.org/10.1007/s11128-015-1194-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-37159-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112875754", 
              "https://doi.org/10.1038/s41598-018-37159-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-014-2024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014966933", 
              "https://doi.org/10.1007/s10773-014-2024-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032924901", 
              "https://doi.org/10.1038/srep11321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-013-1920-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026209836", 
              "https://doi.org/10.1007/s10773-013-1920-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep28813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023226467", 
              "https://doi.org/10.1038/srep28813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-016-3250-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008916081", 
              "https://doi.org/10.1007/s10773-016-3250-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1759-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092593829", 
              "https://doi.org/10.1007/s11128-017-1759-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1594-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084747989", 
              "https://doi.org/10.1007/s11128-017-1594-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-017-9100-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092445117", 
              "https://doi.org/10.1007/s11433-017-9100-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-014-2374-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006470470", 
              "https://doi.org/10.1007/s10773-014-2374-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-016-1246-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034856921", 
              "https://doi.org/10.1007/s11128-016-1246-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-019-2218-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112305524", 
              "https://doi.org/10.1007/s11128-019-2218-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1542-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083883455", 
              "https://doi.org/10.1007/s11128-017-1542-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-1078-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037757136", 
              "https://doi.org/10.1007/s11128-015-1078-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-017-1774-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093128059", 
              "https://doi.org/10.1007/s11128-017-1774-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-016-1430-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048821993", 
              "https://doi.org/10.1007/s11128-016-1430-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-015-1049-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032582970", 
              "https://doi.org/10.1007/s11128-015-1049-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-018-2067-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107224766", 
              "https://doi.org/10.1007/s11128-018-2067-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11467-007-0050-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021119742", 
              "https://doi.org/10.1007/s11467-007-0050-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-014-0766-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037605612", 
              "https://doi.org/10.1007/s11128-014-0766-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-012-1311-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047205610", 
              "https://doi.org/10.1007/s10773-012-1311-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-01-30", 
        "datePublishedReg": "2020-01-30", 
        "description": "Using a three-particle W state as the quantum channel, we investigate the teleportation of an arbitrary single-qubit state in noisy environments. The influence of different noises on the process of teleporation of an arbitrary single-qubit state with a three-particle W state is considered by analytically derivation and calculations of the fidelities of the teleportation. The single-qubit teleportation fidelity was derived and computed numberically in the case of teleportation through a triparticle W state in which the sender\u2019s entangled qubit is interacted to environment during the process of entanglement distribution and the receiver\u2019s entangled particle is rotated to optimize the teleportation fidelity. It is shown that the fidelity of single-qubit teleportation through a strong bit flipping or bit-phase flipping environment can be enhanced by rotating the entangled particle about x-axis or y-axis. While such effect does not appear in quantum teleportation when rotating an entangled particle of Bell state under a strong bit-phase flipping environment.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10773-020-04390-8", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8298876", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8268067", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8123790", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "arbitrary single-qubit state", 
          "single-qubit state", 
          "three-particle W state", 
          "entangled particles", 
          "W state", 
          "teleportation fidelity", 
          "case of teleportation", 
          "quantum noise", 
          "quantum teleportation", 
          "entanglement distribution", 
          "quantum channel", 
          "Bell states", 
          "teleportation", 
          "particles", 
          "qubits", 
          "state", 
          "fidelity", 
          "x-axis", 
          "calculations", 
          "y-axis", 
          "noise", 
          "flipping", 
          "such effects", 
          "channels", 
          "distribution", 
          "noisy environments", 
          "derivation", 
          "effect", 
          "process", 
          "different noises", 
          "sender", 
          "environment", 
          "influence", 
          "cases", 
          "bit flipping"
        ], 
        "name": "Effect of Quantum Noise on Teleportation of an Arbitrary Single-Qubit State via a Triparticle W State", 
        "pagination": "1081-1098", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124434029"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10773-020-04390-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10773-020-04390-8", 
          "https://app.dimensions.ai/details/publication/pub.1124434029"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_847.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10773-020-04390-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10773-020-04390-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10773-020-04390-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10773-020-04390-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10773-020-04390-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      21 PREDICATES      81 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10773-020-04390-8 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N8ec8bb18ae4245f9a3abf73f804982e4
    4 schema:citation sg:pub.10.1007/s10773-012-1311-7
    5 sg:pub.10.1007/s10773-013-1920-9
    6 sg:pub.10.1007/s10773-014-2024-x
    7 sg:pub.10.1007/s10773-014-2374-4
    8 sg:pub.10.1007/s10773-016-3250-1
    9 sg:pub.10.1007/s11128-014-0766-2
    10 sg:pub.10.1007/s11128-015-1049-2
    11 sg:pub.10.1007/s11128-015-1078-x
    12 sg:pub.10.1007/s11128-015-1194-7
    13 sg:pub.10.1007/s11128-016-1246-7
    14 sg:pub.10.1007/s11128-016-1430-9
    15 sg:pub.10.1007/s11128-017-1542-x
    16 sg:pub.10.1007/s11128-017-1594-y
    17 sg:pub.10.1007/s11128-017-1759-8
    18 sg:pub.10.1007/s11128-017-1774-9
    19 sg:pub.10.1007/s11128-018-2067-7
    20 sg:pub.10.1007/s11128-019-2218-5
    21 sg:pub.10.1007/s11433-017-9100-9
    22 sg:pub.10.1007/s11467-007-0050-3
    23 sg:pub.10.1038/s41598-018-37159-5
    24 sg:pub.10.1038/srep11321
    25 sg:pub.10.1038/srep28813
    26 schema:datePublished 2020-01-30
    27 schema:datePublishedReg 2020-01-30
    28 schema:description Using a three-particle W state as the quantum channel, we investigate the teleportation of an arbitrary single-qubit state in noisy environments. The influence of different noises on the process of teleporation of an arbitrary single-qubit state with a three-particle W state is considered by analytically derivation and calculations of the fidelities of the teleportation. The single-qubit teleportation fidelity was derived and computed numberically in the case of teleportation through a triparticle W state in which the sender’s entangled qubit is interacted to environment during the process of entanglement distribution and the receiver’s entangled particle is rotated to optimize the teleportation fidelity. It is shown that the fidelity of single-qubit teleportation through a strong bit flipping or bit-phase flipping environment can be enhanced by rotating the entangled particle about x-axis or y-axis. While such effect does not appear in quantum teleportation when rotating an entangled particle of Bell state under a strong bit-phase flipping environment.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N992e3ba8fdaa426bb708329b379a1787
    32 Nce9b6a7e3c114e8e9c9324ae3a9852fa
    33 sg:journal.1053677
    34 schema:keywords Bell states
    35 W state
    36 arbitrary single-qubit state
    37 bit flipping
    38 calculations
    39 case of teleportation
    40 cases
    41 channels
    42 derivation
    43 different noises
    44 distribution
    45 effect
    46 entangled particles
    47 entanglement distribution
    48 environment
    49 fidelity
    50 flipping
    51 influence
    52 noise
    53 noisy environments
    54 particles
    55 process
    56 quantum channel
    57 quantum noise
    58 quantum teleportation
    59 qubits
    60 sender
    61 single-qubit state
    62 state
    63 such effects
    64 teleportation
    65 teleportation fidelity
    66 three-particle W state
    67 x-axis
    68 y-axis
    69 schema:name Effect of Quantum Noise on Teleportation of an Arbitrary Single-Qubit State via a Triparticle W State
    70 schema:pagination 1081-1098
    71 schema:productId N37ae9452629a40d2960584ce57e7cb85
    72 N3e81cde56b134fa491fbe3478f87e510
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124434029
    74 https://doi.org/10.1007/s10773-020-04390-8
    75 schema:sdDatePublished 2022-11-24T21:05
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N2e7bba43ae1741b1a86fdec5346b8635
    78 schema:url https://doi.org/10.1007/s10773-020-04390-8
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N2e7bba43ae1741b1a86fdec5346b8635 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N37ae9452629a40d2960584ce57e7cb85 schema:name doi
    85 schema:value 10.1007/s10773-020-04390-8
    86 rdf:type schema:PropertyValue
    87 N3e81cde56b134fa491fbe3478f87e510 schema:name dimensions_id
    88 schema:value pub.1124434029
    89 rdf:type schema:PropertyValue
    90 N6f2caba8c32f4466840c6f447a706c56 rdf:first sg:person.014105676141.28
    91 rdf:rest Nb206b559db234fdd9faef1f47ad81240
    92 N8ec8bb18ae4245f9a3abf73f804982e4 rdf:first sg:person.013631002471.07
    93 rdf:rest N6f2caba8c32f4466840c6f447a706c56
    94 N992e3ba8fdaa426bb708329b379a1787 schema:issueNumber 4
    95 rdf:type schema:PublicationIssue
    96 Nb206b559db234fdd9faef1f47ad81240 rdf:first sg:person.015002545271.91
    97 rdf:rest rdf:nil
    98 Nce9b6a7e3c114e8e9c9324ae3a9852fa schema:volumeNumber 59
    99 rdf:type schema:PublicationVolume
    100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Physical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Quantum Physics
    105 rdf:type schema:DefinedTerm
    106 sg:grant.8123790 http://pending.schema.org/fundedItem sg:pub.10.1007/s10773-020-04390-8
    107 rdf:type schema:MonetaryGrant
    108 sg:grant.8268067 http://pending.schema.org/fundedItem sg:pub.10.1007/s10773-020-04390-8
    109 rdf:type schema:MonetaryGrant
    110 sg:grant.8298876 http://pending.schema.org/fundedItem sg:pub.10.1007/s10773-020-04390-8
    111 rdf:type schema:MonetaryGrant
    112 sg:journal.1053677 schema:issn 0020-7748
    113 1572-9575
    114 schema:name International Journal of Theoretical Physics
    115 schema:publisher Springer Nature
    116 rdf:type schema:Periodical
    117 sg:person.013631002471.07 schema:affiliation grid-institutes:grid.411860.a
    118 schema:familyName He
    119 schema:givenName Liang-Ming
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013631002471.07
    121 rdf:type schema:Person
    122 sg:person.014105676141.28 schema:affiliation grid-institutes:grid.411290.f
    123 schema:familyName Wang
    124 schema:givenName Nong
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105676141.28
    126 rdf:type schema:Person
    127 sg:person.015002545271.91 schema:affiliation grid-institutes:grid.411860.a
    128 schema:familyName Zhou
    129 schema:givenName Ping
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015002545271.91
    131 rdf:type schema:Person
    132 sg:pub.10.1007/s10773-012-1311-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047205610
    133 https://doi.org/10.1007/s10773-012-1311-7
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10773-013-1920-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026209836
    136 https://doi.org/10.1007/s10773-013-1920-9
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s10773-014-2024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014966933
    139 https://doi.org/10.1007/s10773-014-2024-x
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s10773-014-2374-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006470470
    142 https://doi.org/10.1007/s10773-014-2374-4
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s10773-016-3250-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008916081
    145 https://doi.org/10.1007/s10773-016-3250-1
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s11128-014-0766-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605612
    148 https://doi.org/10.1007/s11128-014-0766-2
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s11128-015-1049-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032582970
    151 https://doi.org/10.1007/s11128-015-1049-2
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11128-015-1078-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037757136
    154 https://doi.org/10.1007/s11128-015-1078-x
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11128-015-1194-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048488058
    157 https://doi.org/10.1007/s11128-015-1194-7
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11128-016-1246-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034856921
    160 https://doi.org/10.1007/s11128-016-1246-7
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11128-016-1430-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048821993
    163 https://doi.org/10.1007/s11128-016-1430-9
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11128-017-1542-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083883455
    166 https://doi.org/10.1007/s11128-017-1542-x
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11128-017-1594-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084747989
    169 https://doi.org/10.1007/s11128-017-1594-y
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11128-017-1759-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092593829
    172 https://doi.org/10.1007/s11128-017-1759-8
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11128-017-1774-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093128059
    175 https://doi.org/10.1007/s11128-017-1774-9
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11128-018-2067-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107224766
    178 https://doi.org/10.1007/s11128-018-2067-7
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11128-019-2218-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305524
    181 https://doi.org/10.1007/s11128-019-2218-5
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11433-017-9100-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092445117
    184 https://doi.org/10.1007/s11433-017-9100-9
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11467-007-0050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021119742
    187 https://doi.org/10.1007/s11467-007-0050-3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/s41598-018-37159-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112875754
    190 https://doi.org/10.1038/s41598-018-37159-5
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/srep11321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032924901
    193 https://doi.org/10.1038/srep11321
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/srep28813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023226467
    196 https://doi.org/10.1038/srep28813
    197 rdf:type schema:CreativeWork
    198 grid-institutes:grid.411290.f schema:alternateName School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People’s Republic of China
    199 schema:name School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People’s Republic of China
    200 rdf:type schema:Organization
    201 grid-institutes:grid.411860.a schema:alternateName Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, 530006, Nanning, People’s Republic of China
    202 schema:name College of Science, Guangxi University for Nationalities, 530006, Nanning, People’s Republic of China
    203 Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, Guangxi University for Nationalities, 530006, Nanning, People’s Republic of China
    204 Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, 530006, Nanning, People’s Republic of China
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...