Dynamics and Protection of the Relative Entropy of Coherence via Additional Non-interacting Qubits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Guo-you Wang, Deng-kui Jiang

ABSTRACT

We analytically study the dynamical behavior of the quantum coherence of a single-qubit coupled to a bosonic reservoir at zero temperature via plugging additional non-interacting qubits into the reservoir in both Markovian and non-Markovian regimes. The influences of detuning, memory effects and number of additional qubits on the dynamics of the quantum coherence are considered. It is found that, via increasing the number of the additional qubits in the reservoir, the quantum coherence can be preserved. Moreover, the method based on the combination of larger effective detuning, the stronger non-Markovian effects and the more number of additional qubits, can more effectively prevent the loss of the quantum coherence. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10773-018-3934-9

DOI

http://dx.doi.org/10.1007/s10773-018-3934-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107767927


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411427.5", 
          "name": [
            "College of Science, Hunan University of Technology, 412007, Zhuzhou, Hunan, China", 
            "Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, 410081, Changsha, Hunan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Guo-you", 
        "id": "sg:person.013515166342.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013515166342.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411427.5", 
          "name": [
            "Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, 410081, Changsha, Hunan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Deng-kui", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/16/3/033007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000377925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.042120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001685551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.042120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001685551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003434889", 
          "https://doi.org/10.1038/srep10922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008116246", 
          "https://doi.org/10.1038/srep34380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/11/113019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009016164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012643107", 
          "https://doi.org/10.1038/ncomms7383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014265829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019336033", 
          "https://doi.org/10.1038/srep19365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2014.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023699566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.042302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030611829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.042302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030611829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.160502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036456858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.160502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036456858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038063839", 
          "https://doi.org/10.1038/35014537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038063839", 
          "https://doi.org/10.1038/35014537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047896891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047896891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00405000.2013.829687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048615835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2013.07.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049013163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050502387", 
          "https://doi.org/10.1038/nphoton.2011.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/302/1/012037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/42/23/235502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052114024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.170401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053415740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.170401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053415740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2058-9565/1/1/01lt01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059198076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.4277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.032316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.032316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.022329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.022329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.022124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.022124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.012110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.012110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.012111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.012111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.022327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.022327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.052335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.052335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060515720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.012326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.012326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.052324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.052324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.070402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.070402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.120404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.120404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083780974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083780974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.032307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084197563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.032307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084197563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.052121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085634942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.052121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085634942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.041003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092447927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.041003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092447927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2017-80294-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092617973", 
          "https://doi.org/10.1140/epjd/e2017-80294-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "We analytically study the dynamical behavior of the quantum coherence of a single-qubit coupled to a bosonic reservoir at zero temperature via plugging additional non-interacting qubits into the reservoir in both Markovian and non-Markovian regimes. The influences of detuning, memory effects and number of additional qubits on the dynamics of the quantum coherence are considered. It is found that, via increasing the number of the additional qubits in the reservoir, the quantum coherence can be preserved. Moreover, the method based on the combination of larger effective detuning, the stronger non-Markovian effects and the more number of additional qubits, can more effectively prevent the loss of the quantum coherence.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10773-018-3934-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7185447", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053677", 
        "issn": [
          "0020-7748", 
          "1572-9575"
        ], 
        "name": "International Journal of Theoretical Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Dynamics and Protection of the Relative Entropy of Coherence via Additional Non-interacting Qubits", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c332a98dbeda4084327c8be975a9e27a11beeccaa539a9a9a2dbaa128e9ea302"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10773-018-3934-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107767927"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10773-018-3934-9", 
      "https://app.dimensions.ai/details/publication/pub.1107767927"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10773-018-3934-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10773-018-3934-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10773-018-3934-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10773-018-3934-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10773-018-3934-9'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10773-018-3934-9 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N2d012400e4354a599a3dd52c32aa3bb8
4 schema:citation sg:pub.10.1038/35014537
5 sg:pub.10.1038/ncomms7383
6 sg:pub.10.1038/nphoton.2011.35
7 sg:pub.10.1038/srep10922
8 sg:pub.10.1038/srep19365
9 sg:pub.10.1038/srep34380
10 sg:pub.10.1140/epjd/e2017-80294-3
11 https://doi.org/10.1016/j.aop.2014.11.011
12 https://doi.org/10.1016/j.physleta.2013.07.032
13 https://doi.org/10.1080/00405000.2013.829687
14 https://doi.org/10.1088/0953-4075/42/23/235502
15 https://doi.org/10.1088/1367-2630/10/11/113019
16 https://doi.org/10.1088/1367-2630/16/3/033007
17 https://doi.org/10.1088/1742-6596/302/1/012037
18 https://doi.org/10.1088/2058-9565/1/1/01lt01
19 https://doi.org/10.1103/physreva.40.4277
20 https://doi.org/10.1103/physreva.79.042302
21 https://doi.org/10.1103/physreva.82.032316
22 https://doi.org/10.1103/physreva.84.022329
23 https://doi.org/10.1103/physreva.91.042120
24 https://doi.org/10.1103/physreva.92.022124
25 https://doi.org/10.1103/physreva.93.012110
26 https://doi.org/10.1103/physreva.93.012111
27 https://doi.org/10.1103/physreva.93.022327
28 https://doi.org/10.1103/physreva.93.052335
29 https://doi.org/10.1103/physreva.94.012326
30 https://doi.org/10.1103/physreva.94.052324
31 https://doi.org/10.1103/physreva.95.032307
32 https://doi.org/10.1103/physreva.95.052121
33 https://doi.org/10.1103/physrevlett.113.140401
34 https://doi.org/10.1103/physrevlett.113.170401
35 https://doi.org/10.1103/physrevlett.115.020403
36 https://doi.org/10.1103/physrevlett.115.210403
37 https://doi.org/10.1103/physrevlett.116.070402
38 https://doi.org/10.1103/physrevlett.116.120404
39 https://doi.org/10.1103/physrevlett.116.150502
40 https://doi.org/10.1103/physrevlett.118.060502
41 https://doi.org/10.1103/physrevlett.99.160502
42 https://doi.org/10.1103/revmodphys.81.865
43 https://doi.org/10.1103/revmodphys.89.041003
44 schema:datePublished 2019-02
45 schema:datePublishedReg 2019-02-01
46 schema:description We analytically study the dynamical behavior of the quantum coherence of a single-qubit coupled to a bosonic reservoir at zero temperature via plugging additional non-interacting qubits into the reservoir in both Markovian and non-Markovian regimes. The influences of detuning, memory effects and number of additional qubits on the dynamics of the quantum coherence are considered. It is found that, via increasing the number of the additional qubits in the reservoir, the quantum coherence can be preserved. Moreover, the method based on the combination of larger effective detuning, the stronger non-Markovian effects and the more number of additional qubits, can more effectively prevent the loss of the quantum coherence.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1053677
51 schema:name Dynamics and Protection of the Relative Entropy of Coherence via Additional Non-interacting Qubits
52 schema:pagination 1-12
53 schema:productId N7b2a02e5ba96479b8145aad032d0a2f6
54 N93c8264cb13349d59cc89acc940cfa72
55 Nc81673f2435d459c8f5f438e49826cc6
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107767927
57 https://doi.org/10.1007/s10773-018-3934-9
58 schema:sdDatePublished 2019-04-10T23:34
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N8211670503654ec8a6fb7e37b6651d96
61 schema:url https://link.springer.com/10.1007%2Fs10773-018-3934-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2d012400e4354a599a3dd52c32aa3bb8 rdf:first sg:person.013515166342.24
66 rdf:rest N74fec4b53c524f7c953768b7e74fb9ab
67 N6a5bdb1849784ba8939036b4237ac7a6 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
68 schema:familyName Jiang
69 schema:givenName Deng-kui
70 rdf:type schema:Person
71 N74fec4b53c524f7c953768b7e74fb9ab rdf:first N6a5bdb1849784ba8939036b4237ac7a6
72 rdf:rest rdf:nil
73 N7b2a02e5ba96479b8145aad032d0a2f6 schema:name readcube_id
74 schema:value c332a98dbeda4084327c8be975a9e27a11beeccaa539a9a9a2dbaa128e9ea302
75 rdf:type schema:PropertyValue
76 N8211670503654ec8a6fb7e37b6651d96 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N93c8264cb13349d59cc89acc940cfa72 schema:name doi
79 schema:value 10.1007/s10773-018-3934-9
80 rdf:type schema:PropertyValue
81 Nc81673f2435d459c8f5f438e49826cc6 schema:name dimensions_id
82 schema:value pub.1107767927
83 rdf:type schema:PropertyValue
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
88 schema:name Other Physical Sciences
89 rdf:type schema:DefinedTerm
90 sg:grant.7185447 http://pending.schema.org/fundedItem sg:pub.10.1007/s10773-018-3934-9
91 rdf:type schema:MonetaryGrant
92 sg:journal.1053677 schema:issn 0020-7748
93 1572-9575
94 schema:name International Journal of Theoretical Physics
95 rdf:type schema:Periodical
96 sg:person.013515166342.24 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
97 schema:familyName Wang
98 schema:givenName Guo-you
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013515166342.24
100 rdf:type schema:Person
101 sg:pub.10.1038/35014537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038063839
102 https://doi.org/10.1038/35014537
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ncomms7383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012643107
105 https://doi.org/10.1038/ncomms7383
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nphoton.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050502387
108 https://doi.org/10.1038/nphoton.2011.35
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/srep10922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003434889
111 https://doi.org/10.1038/srep10922
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/srep19365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019336033
114 https://doi.org/10.1038/srep19365
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/srep34380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008116246
117 https://doi.org/10.1038/srep34380
118 rdf:type schema:CreativeWork
119 sg:pub.10.1140/epjd/e2017-80294-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092617973
120 https://doi.org/10.1140/epjd/e2017-80294-3
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.aop.2014.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023699566
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.physleta.2013.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049013163
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/00405000.2013.829687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048615835
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0953-4075/42/23/235502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052114024
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/1367-2630/10/11/113019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016164
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/1367-2630/16/3/033007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000377925
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/1742-6596/302/1/012037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812964
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/2058-9565/1/1/01lt01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059198076
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreva.40.4277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480301
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreva.79.042302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030611829
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreva.82.032316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507870
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreva.84.022329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060508961
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreva.91.042120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001685551
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.92.022124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060513848
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.93.012110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060514773
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.93.012111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060514774
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreva.93.022327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515045
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.93.052335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060515720
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.94.012326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516147
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.94.052324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060517066
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreva.95.032307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084197563
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreva.95.052121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085634942
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.113.140401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464847
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.113.170401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053415740
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.115.020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047896891
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.115.210403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014265829
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.116.070402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765011
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.116.120404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765227
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.116.150502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765357
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.118.060502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083780974
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.99.160502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036456858
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/revmodphys.81.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548185
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/revmodphys.89.041003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092447927
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
189 schema:name College of Science, Hunan University of Technology, 412007, Zhuzhou, Hunan, China
190 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, 410081, Changsha, Hunan, China
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...