Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

G. Stacey Staples

ABSTRACT

Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph’s adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph’s vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an “indeterminate” fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph. More... »

PAGES

3923-3934

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10773-017-3381-z

DOI

http://dx.doi.org/10.1007/s10773-017-3381-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084932623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Illinois University Edwardsville", 
          "id": "https://www.grid.ac/institutes/grid.263857.d", 
          "name": [
            "Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staples", 
        "givenName": "G. Stacey", 
        "id": "sg:person.013015301341.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0195-6698(81)80004-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010739510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/41/15/155205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017349638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/pdw004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021185092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-011-0298-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021272989", 
          "https://doi.org/10.1007/s00006-011-0298-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-011-0298-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021272989", 
          "https://doi.org/10.1007/s00006-011-0298-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0742-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021716984", 
          "https://doi.org/10.1007/s00006-016-0742-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-016-0742-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021716984", 
          "https://doi.org/10.1007/s00006-016-0742-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.18471481202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024496826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00006-008-0116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027228484", 
          "https://doi.org/10.1007/s00006-008-0116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2186256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035931746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1991-1028288-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043703906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0603033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130906684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870385"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph\u2019s adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph\u2019s vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an \u201cindeterminate\u201d fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10773-017-3381-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053677", 
        "issn": [
          "0020-7748", 
          "1572-9575"
        ], 
        "name": "International Journal of Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution", 
    "pagination": "3923-3934", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "94a7fb6fa2bf15aabe489479b4cb8f53b370200b0ed0cb8d3f342462c3497fab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10773-017-3381-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084932623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10773-017-3381-z", 
      "https://app.dimensions.ai/details/publication/pub.1084932623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10773-017-3381-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10773-017-3381-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10773-017-3381-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10773-017-3381-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10773-017-3381-z'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10773-017-3381-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N99b27cbf6591416aa54fc8560c133162
4 schema:citation sg:pub.10.1007/s00006-008-0116-5
5 sg:pub.10.1007/s00006-011-0298-0
6 sg:pub.10.1007/s00006-016-0742-2
7 https://doi.org/10.1002/andp.18471481202
8 https://doi.org/10.1016/s0195-6698(81)80004-2
9 https://doi.org/10.1063/1.2186256
10 https://doi.org/10.1088/1751-8113/41/15/155205
11 https://doi.org/10.1090/s0002-9939-1991-1028288-1
12 https://doi.org/10.1112/plms/pdw004
13 https://doi.org/10.1137/0603033
14 https://doi.org/10.1137/130906684
15 schema:datePublished 2017-12
16 schema:datePublishedReg 2017-12-01
17 schema:description Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph’s adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph’s vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an “indeterminate” fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N2fa058f6f35e4f4da4e5ef62b4a3d653
22 Ncd1e8005eb2e4283b92abfa379dca81c
23 sg:journal.1053677
24 schema:name Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
25 schema:pagination 3923-3934
26 schema:productId N2b4e4a9b6fc0413ea707809f3508e191
27 N34c101539d7349518d8d8b84f8d34214
28 N5c62c1d66c9b4d999ba0ff8d7936992e
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932623
30 https://doi.org/10.1007/s10773-017-3381-z
31 schema:sdDatePublished 2019-04-11T12:39
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nc93c0ec773054fdcb5d12a1c95999f3e
34 schema:url https://link.springer.com/10.1007%2Fs10773-017-3381-z
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2b4e4a9b6fc0413ea707809f3508e191 schema:name doi
39 schema:value 10.1007/s10773-017-3381-z
40 rdf:type schema:PropertyValue
41 N2fa058f6f35e4f4da4e5ef62b4a3d653 schema:volumeNumber 56
42 rdf:type schema:PublicationVolume
43 N34c101539d7349518d8d8b84f8d34214 schema:name readcube_id
44 schema:value 94a7fb6fa2bf15aabe489479b4cb8f53b370200b0ed0cb8d3f342462c3497fab
45 rdf:type schema:PropertyValue
46 N5c62c1d66c9b4d999ba0ff8d7936992e schema:name dimensions_id
47 schema:value pub.1084932623
48 rdf:type schema:PropertyValue
49 N99b27cbf6591416aa54fc8560c133162 rdf:first sg:person.013015301341.40
50 rdf:rest rdf:nil
51 Nc93c0ec773054fdcb5d12a1c95999f3e schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Ncd1e8005eb2e4283b92abfa379dca81c schema:issueNumber 12
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1053677 schema:issn 0020-7748
62 1572-9575
63 schema:name International Journal of Theoretical Physics
64 rdf:type schema:Periodical
65 sg:person.013015301341.40 schema:affiliation https://www.grid.ac/institutes/grid.263857.d
66 schema:familyName Staples
67 schema:givenName G. Stacey
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015301341.40
69 rdf:type schema:Person
70 sg:pub.10.1007/s00006-008-0116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027228484
71 https://doi.org/10.1007/s00006-008-0116-5
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/s00006-011-0298-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021272989
74 https://doi.org/10.1007/s00006-011-0298-0
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s00006-016-0742-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021716984
77 https://doi.org/10.1007/s00006-016-0742-2
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1002/andp.18471481202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024496826
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0195-6698(81)80004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010739510
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1063/1.2186256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035931746
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1088/1751-8113/41/15/155205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017349638
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/s0002-9939-1991-1028288-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043703906
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1112/plms/pdw004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021185092
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1137/0603033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848758
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1137/130906684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870385
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.263857.d schema:alternateName Southern Illinois University Edwardsville
96 schema:name Department of Mathematics and Statistics, Southern Illinois University Edwardsville, 62026-1653, Edwardsville, IL, USA
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...