Non-contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-05

AUTHORS

Yongjian Liu, Shen Xu, Ying Wang, Hao Dong

ABSTRACT

Along with the widespread adoption of lithium-ion batteries (LIBs) as one of the main power sources in electric vehicles, temperature control of battery cells and battery modules becomes an important issue attracting much attention. The knowledge of thermal properties of LIB components and interfaces between layers in the stacked structure inside the battery cell will be helpful for accurate predicting the outward heat dissipation of a battery cell. Here presents a new non-contact steady-state method for quickly measuring the thermal conductivity of the sub-millimeter thick active layer and thermal contact resistance between the active layer and the current collector of electrode plates. A control sample with known thermal properties is employed to eliminate the unknown heating power and possible errors induced in parameter calculation, and the thermal conductivity is then quickly determined to be 2.34 W·(m−1·K−1) for the positive plate and 1.26 W·(m−1·K−1) for the negative plate of an 18,650 lithium-ion battery with an experimental error of 12.2 %. Also, the thermal contact resistance is extrapolated from the residue thermal resistance of the electrode plate against the thickness and determined to be 1.57 × 10–5 m2·K·W−1 with a fitting uncertainty of ± 0.62 × 10–5 m2·K·W−1. More... »

PAGES

131

References to SciGraph publications

  • 2022-02-01. A Square Pulse Thermoreflectance Technique for the Measurement of Thermal Properties in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1982-12. Thermophysical properties of quartz glass in JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS
  • 2022-05-03. Measurement of Thermal Diffusivity Distribution for Murray and Murchison Meteorites Using Lock-in Thermography in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10765-022-03058-1

    DOI

    http://dx.doi.org/10.1007/s10765-022-03058-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149241266


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412542.4", 
              "name": [
                "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yongjian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412542.4", 
              "name": [
                "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Shen", 
            "id": "sg:person.01046066213.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046066213.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412542.4", 
              "name": [
                "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412542.4", 
              "name": [
                "School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Hao", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00824797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040968875", 
              "https://doi.org/10.1007/bf00824797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-021-02949-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1145162440", 
              "https://doi.org/10.1007/s10765-021-02949-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-022-03026-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1147573628", 
              "https://doi.org/10.1007/s10765-022-03026-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-05", 
        "datePublishedReg": "2022-07-05", 
        "description": "Along with the widespread adoption of lithium-ion batteries (LIBs) as one of the main power sources in electric vehicles, temperature control of battery cells and battery modules becomes an important issue attracting much attention. The knowledge of thermal properties of LIB components and interfaces between layers in the stacked structure inside the battery cell will be helpful for accurate predicting the outward heat dissipation of a battery cell. Here presents a new non-contact steady-state method for quickly measuring the thermal conductivity of the sub-millimeter thick active layer and thermal contact resistance between the active layer and the current collector of electrode plates. A control sample with known thermal properties is employed to eliminate the unknown heating power and possible errors induced in parameter calculation, and the thermal conductivity is then quickly determined to be 2.34\u00a0W\u00b7(m\u22121\u00b7K\u22121) for the positive plate and 1.26\u00a0W\u00b7(m\u22121\u00b7K\u22121) for the negative plate of an 18,650 lithium-ion battery with an experimental error of 12.2 %. Also, the thermal contact resistance is extrapolated from the residue thermal resistance of the electrode plate against the thickness and determined to be 1.57\u2009\u00d7\u200910\u20135 m2\u00b7K\u00b7W\u22121 with a fitting uncertainty of\u2009\u00b1\u20090.62\u2009\u00d7\u200910\u20135 m2\u00b7K\u00b7W\u22121.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10765-022-03058-1", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043587", 
            "issn": [
              "0195-928X", 
              "1572-9567"
            ], 
            "name": "International Journal of Thermophysics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "lithium-ion batteries", 
          "thermal contact resistance", 
          "battery cells", 
          "contact resistance", 
          "thermal conductivity", 
          "active layer", 
          "electrode plates", 
          "thermal properties", 
          "main power source", 
          "thick active layer", 
          "electric vehicles", 
          "battery module", 
          "thermal resistance", 
          "power source", 
          "current collector", 
          "heating power", 
          "heat dissipation", 
          "LIB components", 
          "thermal characterization", 
          "steady-state method", 
          "temperature control", 
          "negative plates", 
          "stacked structure", 
          "battery plates", 
          "parameter calculation", 
          "positive plates", 
          "layer", 
          "conductivity", 
          "plate", 
          "batteries", 
          "properties", 
          "possible errors", 
          "collector", 
          "resistance", 
          "thermography", 
          "fitting uncertainty", 
          "dissipation", 
          "experimental error", 
          "thickness", 
          "vehicles", 
          "error", 
          "important issue", 
          "interface", 
          "power", 
          "module", 
          "control samples", 
          "uncertainty", 
          "structure", 
          "calculations", 
          "characterization", 
          "widespread adoption", 
          "method", 
          "components", 
          "source", 
          "control", 
          "samples", 
          "issues", 
          "attention", 
          "cells", 
          "adoption", 
          "knowledge"
        ], 
        "name": "Non-contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography", 
        "pagination": "131", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149241266"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10765-022-03058-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10765-022-03058-1", 
          "https://app.dimensions.ai/details/publication/pub.1149241266"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_950.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10765-022-03058-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03058-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03058-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03058-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03058-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      21 PREDICATES      88 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10765-022-03058-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N562f437826af43c8b7de7edd155466bb
    4 schema:citation sg:pub.10.1007/bf00824797
    5 sg:pub.10.1007/s10765-021-02949-z
    6 sg:pub.10.1007/s10765-022-03026-9
    7 schema:datePublished 2022-07-05
    8 schema:datePublishedReg 2022-07-05
    9 schema:description Along with the widespread adoption of lithium-ion batteries (LIBs) as one of the main power sources in electric vehicles, temperature control of battery cells and battery modules becomes an important issue attracting much attention. The knowledge of thermal properties of LIB components and interfaces between layers in the stacked structure inside the battery cell will be helpful for accurate predicting the outward heat dissipation of a battery cell. Here presents a new non-contact steady-state method for quickly measuring the thermal conductivity of the sub-millimeter thick active layer and thermal contact resistance between the active layer and the current collector of electrode plates. A control sample with known thermal properties is employed to eliminate the unknown heating power and possible errors induced in parameter calculation, and the thermal conductivity is then quickly determined to be 2.34 W·(m−1·K−1) for the positive plate and 1.26 W·(m−1·K−1) for the negative plate of an 18,650 lithium-ion battery with an experimental error of 12.2 %. Also, the thermal contact resistance is extrapolated from the residue thermal resistance of the electrode plate against the thickness and determined to be 1.57 × 10–5 m2·K·W−1 with a fitting uncertainty of ± 0.62 × 10–5 m2·K·W−1.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N3e1679ba49384f9a985cb6d23b056bf8
    13 Nb822780e801e40f88219f402d91cb0a2
    14 sg:journal.1043587
    15 schema:keywords LIB components
    16 active layer
    17 adoption
    18 attention
    19 batteries
    20 battery cells
    21 battery module
    22 battery plates
    23 calculations
    24 cells
    25 characterization
    26 collector
    27 components
    28 conductivity
    29 contact resistance
    30 control
    31 control samples
    32 current collector
    33 dissipation
    34 electric vehicles
    35 electrode plates
    36 error
    37 experimental error
    38 fitting uncertainty
    39 heat dissipation
    40 heating power
    41 important issue
    42 interface
    43 issues
    44 knowledge
    45 layer
    46 lithium-ion batteries
    47 main power source
    48 method
    49 module
    50 negative plates
    51 parameter calculation
    52 plate
    53 positive plates
    54 possible errors
    55 power
    56 power source
    57 properties
    58 resistance
    59 samples
    60 source
    61 stacked structure
    62 steady-state method
    63 structure
    64 temperature control
    65 thermal characterization
    66 thermal conductivity
    67 thermal contact resistance
    68 thermal properties
    69 thermal resistance
    70 thermography
    71 thick active layer
    72 thickness
    73 uncertainty
    74 vehicles
    75 widespread adoption
    76 schema:name Non-contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography
    77 schema:pagination 131
    78 schema:productId N23193e553d6649c58e638394026f8e22
    79 N8c01001c720a4aa18d25184347d444c7
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149241266
    81 https://doi.org/10.1007/s10765-022-03058-1
    82 schema:sdDatePublished 2022-09-02T16:08
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher Nfcdae931eac74420a6bca836228d4927
    85 schema:url https://doi.org/10.1007/s10765-022-03058-1
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N23193e553d6649c58e638394026f8e22 schema:name doi
    90 schema:value 10.1007/s10765-022-03058-1
    91 rdf:type schema:PropertyValue
    92 N3e1679ba49384f9a985cb6d23b056bf8 schema:volumeNumber 43
    93 rdf:type schema:PublicationVolume
    94 N562f437826af43c8b7de7edd155466bb rdf:first Nc5d5c3aabea547d4aaf9c2f9ab8c29d2
    95 rdf:rest Nf96e305193cc4daca6f7154deae67b35
    96 N5e7029103fc9473aac4232ce5a12d74a rdf:first N86deca5c4c6e46b4bdac0121b21be930
    97 rdf:rest N9fd3c79a708544bf813ed2f7bcf4cdf5
    98 N86deca5c4c6e46b4bdac0121b21be930 schema:affiliation grid-institutes:grid.412542.4
    99 schema:familyName Wang
    100 schema:givenName Ying
    101 rdf:type schema:Person
    102 N8c01001c720a4aa18d25184347d444c7 schema:name dimensions_id
    103 schema:value pub.1149241266
    104 rdf:type schema:PropertyValue
    105 N9fd3c79a708544bf813ed2f7bcf4cdf5 rdf:first Nbdc9a9e6382943a987d9e844652cc6d4
    106 rdf:rest rdf:nil
    107 Nb822780e801e40f88219f402d91cb0a2 schema:issueNumber 9
    108 rdf:type schema:PublicationIssue
    109 Nbdc9a9e6382943a987d9e844652cc6d4 schema:affiliation grid-institutes:grid.412542.4
    110 schema:familyName Dong
    111 schema:givenName Hao
    112 rdf:type schema:Person
    113 Nc5d5c3aabea547d4aaf9c2f9ab8c29d2 schema:affiliation grid-institutes:grid.412542.4
    114 schema:familyName Liu
    115 schema:givenName Yongjian
    116 rdf:type schema:Person
    117 Nf96e305193cc4daca6f7154deae67b35 rdf:first sg:person.01046066213.56
    118 rdf:rest N5e7029103fc9473aac4232ce5a12d74a
    119 Nfcdae931eac74420a6bca836228d4927 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Engineering
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Materials Engineering
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1043587 schema:issn 0195-928X
    128 1572-9567
    129 schema:name International Journal of Thermophysics
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.01046066213.56 schema:affiliation grid-institutes:grid.412542.4
    133 schema:familyName Xu
    134 schema:givenName Shen
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046066213.56
    136 rdf:type schema:Person
    137 sg:pub.10.1007/bf00824797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040968875
    138 https://doi.org/10.1007/bf00824797
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10765-021-02949-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1145162440
    141 https://doi.org/10.1007/s10765-021-02949-z
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s10765-022-03026-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147573628
    144 https://doi.org/10.1007/s10765-022-03026-9
    145 rdf:type schema:CreativeWork
    146 grid-institutes:grid.412542.4 schema:alternateName School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People’s Republic of China
    147 schema:name School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 201620, Shanghai, People’s Republic of China
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...