Prediction of the Thermal Conductivity of H2/CO2/CO/CH4/H2O Mixtures at High Temperatures and High Pressures Based on the Extended Corresponding States ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-17

AUTHORS

Fengyi Li, Weigang Ma, Xing Zhang

ABSTRACT

An improved extended corresponding states principle for predicting the thermal conductivity of H2/CO2/CO/CH4/H2O mixture is presented. The model uses hydrogen as a reference fluid and employs shape factors and a density-modified parameter. Calculations for the thermal conductivity require only critical constants, molecular weight, the ideal gas heat capacity, the dilute gas viscosity, and mole fraction for each mixture component as input. The model was tested for pure fluids, binary hydrogen-containing mixtures, a binary non-hydrogen-containing mixture, and quinary mixtures at temperature up to 915 K. The average absolute deviation between experiments and predictions is less than 4.52 %. The present model is suitable for prediction at temperatures lower than 1000 K and pressures lower than 20 MPa with an uncertainty of 6.12 % (k = 2), which is necessary for the implementation of hydrogen generation systems and has potential to be applied to more species and mixtures. More... »

PAGES

121

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10765-022-03044-7

DOI

http://dx.doi.org/10.1007/s10765-022-03044-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148760989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Fengyi", 
        "id": "sg:person.010735650027.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010735650027.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Weigang", 
        "id": "sg:person.012236742257.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012236742257.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xing", 
        "id": "sg:person.013020514005.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020514005.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10765-011-1052-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040564041", 
          "https://doi.org/10.1007/s10765-011-1052-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10765-005-5566-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022567976", 
          "https://doi.org/10.1007/s10765-005-5566-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-17", 
    "datePublishedReg": "2022-06-17", 
    "description": "An improved extended corresponding states principle for predicting the thermal conductivity of H2/CO2/CO/CH4/H2O mixture is presented. The model uses hydrogen as a reference fluid and employs shape factors and a density-modified parameter. Calculations for the thermal conductivity require only critical constants, molecular weight, the ideal gas heat capacity, the dilute gas viscosity, and mole fraction for each mixture component as input. The model was tested for pure fluids, binary hydrogen-containing mixtures, a binary non-hydrogen-containing mixture, and quinary mixtures at temperature up to 915\u00a0K. The average absolute deviation between experiments and predictions is less than 4.52\u00a0%. The present model is suitable for prediction at temperatures lower than 1000\u00a0K and pressures lower than 20\u00a0MPa with an uncertainty of 6.12\u00a0% (k\u2009=\u20092), which is necessary for the implementation of hydrogen generation systems and has potential to be applied to more species and mixtures.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10765-022-03044-7", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8930682", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043587", 
        "issn": [
          "0195-928X", 
          "1572-9567"
        ], 
        "name": "International Journal of Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "thermal conductivity", 
      "CH4/H2O mixtures", 
      "hydrogen generation system", 
      "hydrogen-containing mixtures", 
      "generation system", 
      "gas viscosity", 
      "H2O mixtures", 
      "dilute gas viscosity", 
      "gas heat capacity", 
      "ideal-gas heat capacity", 
      "shape factor", 
      "conductivity", 
      "high temperature", 
      "present model", 
      "pure fluids", 
      "high pressure", 
      "reference fluid", 
      "average absolute deviation", 
      "heat capacity", 
      "temperature", 
      "quinary mixtures", 
      "corresponding states principle", 
      "extended corresponding states principle", 
      "mixture", 
      "MPa", 
      "fluid", 
      "prediction", 
      "mixture components", 
      "states principle", 
      "viscosity", 
      "pressure", 
      "absolute deviation", 
      "hydrogen", 
      "model", 
      "critical constants", 
      "parameters", 
      "principles", 
      "uncertainty", 
      "calculations", 
      "capacity", 
      "input", 
      "system", 
      "experiments", 
      "deviation", 
      "components", 
      "fraction", 
      "implementation", 
      "constants", 
      "molecular weight", 
      "weight", 
      "factors", 
      "species", 
      "more species"
    ], 
    "name": "Prediction of the Thermal Conductivity of H2/CO2/CO/CH4/H2O Mixtures at High Temperatures and High Pressures Based on the Extended Corresponding States Principle", 
    "pagination": "121", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148760989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10765-022-03044-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10765-022-03044-7", 
      "https://app.dimensions.ai/details/publication/pub.1148760989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_935.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10765-022-03044-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03044-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03044-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03044-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03044-7'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      79 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10765-022-03044-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N61207610c6db41e0af5ce8f1f0a9ca54
4 schema:citation sg:pub.10.1007/s10765-005-5566-6
5 sg:pub.10.1007/s10765-011-1052-5
6 schema:datePublished 2022-06-17
7 schema:datePublishedReg 2022-06-17
8 schema:description An improved extended corresponding states principle for predicting the thermal conductivity of H2/CO2/CO/CH4/H2O mixture is presented. The model uses hydrogen as a reference fluid and employs shape factors and a density-modified parameter. Calculations for the thermal conductivity require only critical constants, molecular weight, the ideal gas heat capacity, the dilute gas viscosity, and mole fraction for each mixture component as input. The model was tested for pure fluids, binary hydrogen-containing mixtures, a binary non-hydrogen-containing mixture, and quinary mixtures at temperature up to 915 K. The average absolute deviation between experiments and predictions is less than 4.52 %. The present model is suitable for prediction at temperatures lower than 1000 K and pressures lower than 20 MPa with an uncertainty of 6.12 % (k = 2), which is necessary for the implementation of hydrogen generation systems and has potential to be applied to more species and mixtures.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N9b230a0443be42cfb6ecb543db5e6f36
12 Nadf9b286a8874223930039578f0f57d2
13 sg:journal.1043587
14 schema:keywords CH4/H2O mixtures
15 H2O mixtures
16 MPa
17 absolute deviation
18 average absolute deviation
19 calculations
20 capacity
21 components
22 conductivity
23 constants
24 corresponding states principle
25 critical constants
26 deviation
27 dilute gas viscosity
28 experiments
29 extended corresponding states principle
30 factors
31 fluid
32 fraction
33 gas heat capacity
34 gas viscosity
35 generation system
36 heat capacity
37 high pressure
38 high temperature
39 hydrogen
40 hydrogen generation system
41 hydrogen-containing mixtures
42 ideal-gas heat capacity
43 implementation
44 input
45 mixture
46 mixture components
47 model
48 molecular weight
49 more species
50 parameters
51 prediction
52 present model
53 pressure
54 principles
55 pure fluids
56 quinary mixtures
57 reference fluid
58 shape factor
59 species
60 states principle
61 system
62 temperature
63 thermal conductivity
64 uncertainty
65 viscosity
66 weight
67 schema:name Prediction of the Thermal Conductivity of H2/CO2/CO/CH4/H2O Mixtures at High Temperatures and High Pressures Based on the Extended Corresponding States Principle
68 schema:pagination 121
69 schema:productId N35668dbb752145428b68f93754b90b57
70 Ne684a221751d41e7b0e35b8ce14f0a52
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148760989
72 https://doi.org/10.1007/s10765-022-03044-7
73 schema:sdDatePublished 2022-09-02T16:08
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nd05e907ee5a54cd0956dfae133a18119
76 schema:url https://doi.org/10.1007/s10765-022-03044-7
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N35668dbb752145428b68f93754b90b57 schema:name doi
81 schema:value 10.1007/s10765-022-03044-7
82 rdf:type schema:PropertyValue
83 N491b64f96b2b433599c32dc0c158d0de rdf:first sg:person.012236742257.39
84 rdf:rest Nbf14c425e4d94ad3b5c8e57fd0fcab24
85 N61207610c6db41e0af5ce8f1f0a9ca54 rdf:first sg:person.010735650027.09
86 rdf:rest N491b64f96b2b433599c32dc0c158d0de
87 N9b230a0443be42cfb6ecb543db5e6f36 schema:issueNumber 8
88 rdf:type schema:PublicationIssue
89 Nadf9b286a8874223930039578f0f57d2 schema:volumeNumber 43
90 rdf:type schema:PublicationVolume
91 Nbf14c425e4d94ad3b5c8e57fd0fcab24 rdf:first sg:person.013020514005.93
92 rdf:rest rdf:nil
93 Nd05e907ee5a54cd0956dfae133a18119 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ne684a221751d41e7b0e35b8ce14f0a52 schema:name dimensions_id
96 schema:value pub.1148760989
97 rdf:type schema:PropertyValue
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
102 schema:name Interdisciplinary Engineering
103 rdf:type schema:DefinedTerm
104 sg:grant.8930682 http://pending.schema.org/fundedItem sg:pub.10.1007/s10765-022-03044-7
105 rdf:type schema:MonetaryGrant
106 sg:journal.1043587 schema:issn 0195-928X
107 1572-9567
108 schema:name International Journal of Thermophysics
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010735650027.09 schema:affiliation grid-institutes:grid.12527.33
112 schema:familyName Li
113 schema:givenName Fengyi
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010735650027.09
115 rdf:type schema:Person
116 sg:person.012236742257.39 schema:affiliation grid-institutes:grid.12527.33
117 schema:familyName Ma
118 schema:givenName Weigang
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012236742257.39
120 rdf:type schema:Person
121 sg:person.013020514005.93 schema:affiliation grid-institutes:grid.12527.33
122 schema:familyName Zhang
123 schema:givenName Xing
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020514005.93
125 rdf:type schema:Person
126 sg:pub.10.1007/s10765-005-5566-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022567976
127 https://doi.org/10.1007/s10765-005-5566-6
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10765-011-1052-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040564041
130 https://doi.org/10.1007/s10765-011-1052-5
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.12527.33 schema:alternateName Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
133 schema:name Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...