Phenomenological High-Pressure Equation of State for Nitrogen, Methane, Methanol, Carbon Dioxide, and Helium View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-02

AUTHORS

Roman Tomaschitz

ABSTRACT

The vapor–liquid phase equilibria, saturation curves and pressure isotherms of nitrogen, methane, methanol, carbon dioxide and helium are modeled with a closed-form non-cubic equation of state (EoS), developed to describe high-pressure and high-density properties of fluids. The EoS is analytic and applicable to pure compounds as well as mixtures in the full temperature range above the melting point (or lambda point in the case of normal fluid helium) and up to the limit density where the pressure singularity occurs. The temperature evolution of the EoS is determined by four temperature-dependent scale factors on which the EoS linearly depends. Above the critical temperature, these scale factors can be regressed from empirical supercritical isotherms. Based on the proposed EoS, the Helmholtz and Gibbs free energies of the mentioned fluids are calculated, also in closed form. In the subcritical regime, a convex Helmholtz free energy is obtained by way of the common tangent construction. The subcritical scale factors of the EoS are inferred from the empirical liquid and vapor saturation densities, so that the EoS is consistent with the common tangent construction and the measured coexistence curve. More... »

PAGES

130

References to SciGraph publications

  • 2022-01-10. Combination of Gibbs and Helmholtz Energy Equations of State in a Multiparameter Mixture Model Using the IAPWS Seawater Model as an Example in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1998-07. A Reference Quality Equation of State for Nitrogen in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2021-08-29. Dynamic Viscosity of Binary Fluid Mixtures: A Review Focusing on Asymmetric Mixtures in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2021-06-04. Modeling electrical resistivity and particle fluxes with multiply broken power-law distributions in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2022-01-10. A Fundamental Equation of State for Chloroethene for Temperatures from the Triple Point to 430 K and Pressures to 100 MPa in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2020-01-02. Analysis of Thermodynamic Consistency Behavior of CO2 Solubility in Some Associating Solvents in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2019-11-11. A Review of the Alpha Functions of Cubic Equations of State for Different Research Systems in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2018-03-19. Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2020-11-16. Modeling Vapor–Liquid Equilibria and Surface Tension of Carboxylic Acids + Water Mixtures Using Peng–Robinson Equation of State and Gradient Theory in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2014-11-13. Virial Approximation of the TEOS-10 Equation for the Fugacity of Water in Humid Air in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2018-02-13. Evaluation of Thermodynamic Models for Predicting Phase Equilibria of CO2 + Impurity Binary Mixture in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2019-11-06. Anomaly in the Virial Expansion of IAPWS-95 at Low Temperatures in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2021-03-11. Modeling of Phase Equilibria and Surface Tension for N,N-Dimethylcyclohexylamine + Alcohol Mixtures at Different Temperatures in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2020-07-11. Modeling Interfacial Tension of Hexane + Alcohol Mixtures at Different Temperatures Using Linear Gradient Theory with Cubic Plus Association Equation of State in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2020-03-16. Evaluation of the Peng–Robinson and the Cubic-Plus-Association Equations of State in Modeling VLE of Carboxylic Acids with Water in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2022-01-04. Molecular Dynamics Simulation and a Cubic Equation of State of Supercritical Methane Up to 3000 K and 3000 MPa in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2020-10-15. Vapor–Liquid Equilibrium Property Measurements for R32/R1234yf Binary Mixtures in Low R32 Concentration in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10765-022-03034-9

    DOI

    http://dx.doi.org/10.1007/s10765-022-03034-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149183547


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Classical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sechsschimmelgasse 1/21-22, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Sechsschimmelgasse 1/21-22, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tomaschitz", 
            "givenName": "Roman", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10765-018-2377-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101626901", 
              "https://doi.org/10.1007/s10765-018-2377-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-021-02815-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136330587", 
              "https://doi.org/10.1007/s10765-021-02815-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-019-2566-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122332980", 
              "https://doi.org/10.1007/s10765-019-2566-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-021-02961-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1144552183", 
              "https://doi.org/10.1007/s10765-021-02961-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-014-1784-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009050337", 
              "https://doi.org/10.1007/s10765-014-1784-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-020-02703-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129299801", 
              "https://doi.org/10.1007/s10765-020-02703-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/s13360-021-01542-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138618156", 
              "https://doi.org/10.1140/epjp/s13360-021-01542-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022689625833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025364075", 
              "https://doi.org/10.1023/a:1022689625833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-021-02959-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1144552181", 
              "https://doi.org/10.1007/s10765-021-02959-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-019-2567-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122484594", 
              "https://doi.org/10.1007/s10765-019-2567-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-020-02752-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131786638", 
              "https://doi.org/10.1007/s10765-020-02752-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-020-02643-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125685933", 
              "https://doi.org/10.1007/s10765-020-02643-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-021-02905-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140731074", 
              "https://doi.org/10.1007/s10765-021-02905-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-021-02952-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1144401729", 
              "https://doi.org/10.1007/s10765-021-02952-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-019-2588-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123789613", 
              "https://doi.org/10.1007/s10765-019-2588-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-018-2364-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101004444", 
              "https://doi.org/10.1007/s10765-018-2364-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-020-02763-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132666720", 
              "https://doi.org/10.1007/s10765-020-02763-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-02", 
        "datePublishedReg": "2022-07-02", 
        "description": "The vapor\u2013liquid phase equilibria, saturation curves and pressure isotherms of nitrogen, methane, methanol, carbon dioxide and helium are modeled with a closed-form non-cubic equation of state (EoS), developed to describe high-pressure and high-density properties of fluids. The EoS is analytic and applicable to pure compounds as well as mixtures in the full temperature range above the melting point (or lambda point in the case of normal fluid\u00a0helium) and up to the limit density where the pressure singularity occurs. The temperature evolution of the EoS is determined by four temperature-dependent scale factors on which the EoS linearly depends. Above the critical temperature, these scale factors can be regressed from empirical supercritical isotherms. Based on the proposed EoS, the Helmholtz and Gibbs free energies of the mentioned fluids are calculated, also in closed form. In the subcritical regime, a convex Helmholtz free energy is obtained by way of the common tangent construction. The subcritical scale factors of the EoS are inferred from the empirical liquid and vapor saturation densities, so that the EoS is consistent with the common tangent construction and the measured coexistence curve.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10765-022-03034-9", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043587", 
            "issn": [
              "0195-928X", 
              "1572-9567"
            ], 
            "name": "International Journal of Thermophysics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "common tangent construction", 
          "carbon dioxide", 
          "full temperature range", 
          "scale factor", 
          "vapor-liquid phase equilibria", 
          "tangent construction", 
          "temperature evolution", 
          "temperature range", 
          "melting point", 
          "pressure isotherms", 
          "pressure singularity", 
          "subcritical regime", 
          "Gibbs free energy", 
          "free energy", 
          "phase equilibria", 
          "Helmholtz free energy", 
          "methane", 
          "critical temperature", 
          "isotherms", 
          "high-density properties", 
          "dioxide", 
          "helium", 
          "high-pressure equation", 
          "supercritical isotherms", 
          "energy", 
          "density", 
          "fluid", 
          "equations", 
          "coexistence curve", 
          "non-cubic equations", 
          "temperature", 
          "liquid", 
          "construction", 
          "methanol", 
          "curves", 
          "EO", 
          "properties", 
          "nitrogen", 
          "mixture", 
          "saturation curve", 
          "range", 
          "regime", 
          "Helmholtz", 
          "limit density", 
          "singularity", 
          "equilibrium", 
          "point", 
          "state", 
          "evolution", 
          "factors", 
          "way", 
          "pure compounds", 
          "form", 
          "compounds", 
          "saturation density"
        ], 
        "name": "Phenomenological High-Pressure Equation of State for Nitrogen, Methane, Methanol, Carbon Dioxide, and Helium", 
        "pagination": "130", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149183547"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10765-022-03034-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10765-022-03034-9", 
          "https://app.dimensions.ai/details/publication/pub.1149183547"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_928.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10765-022-03034-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03034-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03034-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03034-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-022-03034-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      100 URIs      71 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10765-022-03034-9 schema:about anzsrc-for:02
    2 anzsrc-for:0203
    3 anzsrc-for:03
    4 anzsrc-for:0306
    5 anzsrc-for:09
    6 anzsrc-for:0904
    7 schema:author N24831f5766224436bf6d1671cbbc08c1
    8 schema:citation sg:pub.10.1007/s10765-014-1784-0
    9 sg:pub.10.1007/s10765-018-2364-5
    10 sg:pub.10.1007/s10765-018-2377-0
    11 sg:pub.10.1007/s10765-019-2566-5
    12 sg:pub.10.1007/s10765-019-2567-4
    13 sg:pub.10.1007/s10765-019-2588-z
    14 sg:pub.10.1007/s10765-020-02643-6
    15 sg:pub.10.1007/s10765-020-02703-x
    16 sg:pub.10.1007/s10765-020-02752-2
    17 sg:pub.10.1007/s10765-020-02763-z
    18 sg:pub.10.1007/s10765-021-02815-y
    19 sg:pub.10.1007/s10765-021-02905-x
    20 sg:pub.10.1007/s10765-021-02952-4
    21 sg:pub.10.1007/s10765-021-02959-x
    22 sg:pub.10.1007/s10765-021-02961-3
    23 sg:pub.10.1023/a:1022689625833
    24 sg:pub.10.1140/epjp/s13360-021-01542-5
    25 schema:datePublished 2022-07-02
    26 schema:datePublishedReg 2022-07-02
    27 schema:description The vapor–liquid phase equilibria, saturation curves and pressure isotherms of nitrogen, methane, methanol, carbon dioxide and helium are modeled with a closed-form non-cubic equation of state (EoS), developed to describe high-pressure and high-density properties of fluids. The EoS is analytic and applicable to pure compounds as well as mixtures in the full temperature range above the melting point (or lambda point in the case of normal fluid helium) and up to the limit density where the pressure singularity occurs. The temperature evolution of the EoS is determined by four temperature-dependent scale factors on which the EoS linearly depends. Above the critical temperature, these scale factors can be regressed from empirical supercritical isotherms. Based on the proposed EoS, the Helmholtz and Gibbs free energies of the mentioned fluids are calculated, also in closed form. In the subcritical regime, a convex Helmholtz free energy is obtained by way of the common tangent construction. The subcritical scale factors of the EoS are inferred from the empirical liquid and vapor saturation densities, so that the EoS is consistent with the common tangent construction and the measured coexistence curve.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N83e21328325841e9abdf9197215f7d89
    31 Na84f23e9a90143cd8e5ec0d495c4ca80
    32 sg:journal.1043587
    33 schema:keywords EO
    34 Gibbs free energy
    35 Helmholtz
    36 Helmholtz free energy
    37 carbon dioxide
    38 coexistence curve
    39 common tangent construction
    40 compounds
    41 construction
    42 critical temperature
    43 curves
    44 density
    45 dioxide
    46 energy
    47 equations
    48 equilibrium
    49 evolution
    50 factors
    51 fluid
    52 form
    53 free energy
    54 full temperature range
    55 helium
    56 high-density properties
    57 high-pressure equation
    58 isotherms
    59 limit density
    60 liquid
    61 melting point
    62 methane
    63 methanol
    64 mixture
    65 nitrogen
    66 non-cubic equations
    67 phase equilibria
    68 point
    69 pressure isotherms
    70 pressure singularity
    71 properties
    72 pure compounds
    73 range
    74 regime
    75 saturation curve
    76 saturation density
    77 scale factor
    78 singularity
    79 state
    80 subcritical regime
    81 supercritical isotherms
    82 tangent construction
    83 temperature
    84 temperature evolution
    85 temperature range
    86 vapor-liquid phase equilibria
    87 way
    88 schema:name Phenomenological High-Pressure Equation of State for Nitrogen, Methane, Methanol, Carbon Dioxide, and Helium
    89 schema:pagination 130
    90 schema:productId N2da45e852d7f4703ae60d77f8da53d75
    91 N6c7d354d8f204fdd99ab568c162a233d
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149183547
    93 https://doi.org/10.1007/s10765-022-03034-9
    94 schema:sdDatePublished 2022-12-01T06:44
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N09adff4cd4124614be95c8145f14b565
    97 schema:url https://doi.org/10.1007/s10765-022-03034-9
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N09adff4cd4124614be95c8145f14b565 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N24831f5766224436bf6d1671cbbc08c1 rdf:first N33bdaebe93ba4d519d6b83f3fe5b4600
    104 rdf:rest rdf:nil
    105 N2da45e852d7f4703ae60d77f8da53d75 schema:name doi
    106 schema:value 10.1007/s10765-022-03034-9
    107 rdf:type schema:PropertyValue
    108 N33bdaebe93ba4d519d6b83f3fe5b4600 schema:affiliation grid-institutes:None
    109 schema:familyName Tomaschitz
    110 schema:givenName Roman
    111 rdf:type schema:Person
    112 N6c7d354d8f204fdd99ab568c162a233d schema:name dimensions_id
    113 schema:value pub.1149183547
    114 rdf:type schema:PropertyValue
    115 N83e21328325841e9abdf9197215f7d89 schema:issueNumber 8
    116 rdf:type schema:PublicationIssue
    117 Na84f23e9a90143cd8e5ec0d495c4ca80 schema:volumeNumber 43
    118 rdf:type schema:PublicationVolume
    119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Physical Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Classical Physics
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Chemical Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Physical Chemistry (incl. Structural)
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Engineering
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Chemical Engineering
    136 rdf:type schema:DefinedTerm
    137 sg:journal.1043587 schema:issn 0195-928X
    138 1572-9567
    139 schema:name International Journal of Thermophysics
    140 schema:publisher Springer Nature
    141 rdf:type schema:Periodical
    142 sg:pub.10.1007/s10765-014-1784-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009050337
    143 https://doi.org/10.1007/s10765-014-1784-0
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s10765-018-2364-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101004444
    146 https://doi.org/10.1007/s10765-018-2364-5
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10765-018-2377-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101626901
    149 https://doi.org/10.1007/s10765-018-2377-0
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10765-019-2566-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122332980
    152 https://doi.org/10.1007/s10765-019-2566-5
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10765-019-2567-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122484594
    155 https://doi.org/10.1007/s10765-019-2567-4
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10765-019-2588-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1123789613
    158 https://doi.org/10.1007/s10765-019-2588-z
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s10765-020-02643-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125685933
    161 https://doi.org/10.1007/s10765-020-02643-6
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10765-020-02703-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1129299801
    164 https://doi.org/10.1007/s10765-020-02703-x
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10765-020-02752-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131786638
    167 https://doi.org/10.1007/s10765-020-02752-2
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s10765-020-02763-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1132666720
    170 https://doi.org/10.1007/s10765-020-02763-z
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s10765-021-02815-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1136330587
    173 https://doi.org/10.1007/s10765-021-02815-y
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10765-021-02905-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1140731074
    176 https://doi.org/10.1007/s10765-021-02905-x
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s10765-021-02952-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144401729
    179 https://doi.org/10.1007/s10765-021-02952-4
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10765-021-02959-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1144552181
    182 https://doi.org/10.1007/s10765-021-02959-x
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10765-021-02961-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144552183
    185 https://doi.org/10.1007/s10765-021-02961-3
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1023/a:1022689625833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025364075
    188 https://doi.org/10.1023/a:1022689625833
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1140/epjp/s13360-021-01542-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138618156
    191 https://doi.org/10.1140/epjp/s13360-021-01542-5
    192 rdf:type schema:CreativeWork
    193 grid-institutes:None schema:alternateName Sechsschimmelgasse 1/21-22, 1090, Vienna, Austria
    194 schema:name Sechsschimmelgasse 1/21-22, 1090, Vienna, Austria
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...