Limits of Spatial Resolution for Thermography and Other Non-destructive Imaging Methods Based on Diffusion Waves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09

AUTHORS

Peter Burgholzer, Günther Hendorfer

ABSTRACT

In this work the measured variable, such as temperature, is a random variable showing fluctuations. The loss of information caused by diffusion waves in non-destructive testing can be described by stochastic processes. In non-destructive imaging, the information about the spatial pattern of a samples interior has to be transferred to the sample surface by certain waves, e.g., thermal waves. At the sample surface these waves can be detected and the interior structure is reconstructed from the measured signals. The amount of information about the interior of the sample, which can be gained from the detected waves on the sample surface, is essentially influenced by the propagation from its excitation to the surface. Diffusion causes entropy production and information loss for the propagating waves. Mandelis has developed a unifying framework for treating diverse diffusion-related periodic phenomena under the global mathematical label of diffusion-wave fields, such as thermal waves. Thermography uses the time-dependent diffusion of heat (either pulsed or modulated periodically) which goes along with entropy production and a loss of information. Several attempts have been made to compensate for this diffusive effect to get a higher resolution for the reconstructed images of the samples interior. In this work it is shown that fluctuations limit this compensation. Therefore, the spatial resolution for non-destructive imaging at a certain depth is also limited by theory. More... »

PAGES

1617-1632

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10765-013-1513-0

DOI

http://dx.doi.org/10.1007/s10765-013-1513-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012732879

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24347758


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Center for Non Destructive Testing (Austria)", 
          "id": "https://www.grid.ac/institutes/grid.451841.d", 
          "name": [
            "Christian Doppler Laboratory for Photoacoustic Imaging and Laser Ultrasonics, Research Center for Non Destructive Testing GmbH (RECENDT), Altenberger Strasse 69, 4040, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgholzer", 
        "givenName": "Peter", 
        "id": "sg:person.01035176677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035176677.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "FHOOE Forschungs & Entwicklungs GmbH, Stelzhamerstr. 23, 4600, Wels, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hendorfer", 
        "givenName": "G\u00fcnther", 
        "id": "sg:person.010011123544.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011123544.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-03709-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003339179", 
          "https://doi.org/10.1007/978-3-662-03709-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03709-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003339179", 
          "https://doi.org/10.1007/978-3-662-03709-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.050601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.050601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006515838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006515838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.080602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008080779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.080602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008080779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.046105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021492080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.046105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021492080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.2721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031806362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.2721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031806362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb00917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038869286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.040602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041733512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.040602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041733512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3548-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048962475", 
          "https://doi.org/10.1007/978-1-4757-3548-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3548-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048962475", 
          "https://doi.org/10.1007/978-1-4757-3548-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.32.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.32.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.32.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.32.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.36.823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.36.823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.83.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.83.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.86.702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.86.702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.88.1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.88.1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.026610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.026610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.15.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.15.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1971557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062243570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.12.000834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065157596"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "In this work the measured variable, such as temperature, is a random variable showing fluctuations. The loss of information caused by diffusion waves in non-destructive testing can be described by stochastic processes. In non-destructive imaging, the information about the spatial pattern of a samples interior has to be transferred to the sample surface by certain waves, e.g., thermal waves. At the sample surface these waves can be detected and the interior structure is reconstructed from the measured signals. The amount of information about the interior of the sample, which can be gained from the detected waves on the sample surface, is essentially influenced by the propagation from its excitation to the surface. Diffusion causes entropy production and information loss for the propagating waves. Mandelis has developed a unifying framework for treating diverse diffusion-related periodic phenomena under the global mathematical label of diffusion-wave fields, such as thermal waves. Thermography uses the time-dependent diffusion of heat (either pulsed or modulated periodically) which goes along with entropy production and a loss of information. Several attempts have been made to compensate for this diffusive effect to get a higher resolution for the reconstructed images of the samples interior. In this work it is shown that fluctuations limit this compensation. Therefore, the spatial resolution for non-destructive imaging at a certain depth is also limited by theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10765-013-1513-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580426", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043587", 
        "issn": [
          "0195-928X", 
          "1572-9567"
        ], 
        "name": "International Journal of Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8-9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Limits of Spatial Resolution for Thermography and Other Non-destructive Imaging Methods Based on Diffusion Waves", 
    "pagination": "1617-1632", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ca84b0162a452af060b031eea067c51e996b08d499de11b903211473f4a9a3d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24347758"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101532093"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10765-013-1513-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012732879"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10765-013-1513-0", 
      "https://app.dimensions.ai/details/publication/pub.1012732879"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10765-013-1513-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-013-1513-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-013-1513-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-013-1513-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-013-1513-0'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10765-013-1513-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb160beae469b450f8c3826fcf6ea92b4
4 schema:citation sg:pub.10.1007/978-1-4757-3548-2
5 sg:pub.10.1007/978-3-662-03709-6
6 https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
7 https://doi.org/10.1088/1367-2630/11/7/073008
8 https://doi.org/10.1103/physrev.106.620
9 https://doi.org/10.1103/physrev.32.110
10 https://doi.org/10.1103/physrev.32.97
11 https://doi.org/10.1103/physrev.36.823
12 https://doi.org/10.1103/physrev.83.34
13 https://doi.org/10.1103/physrev.86.702
14 https://doi.org/10.1103/physrev.88.1387
15 https://doi.org/10.1103/physreve.60.2721
16 https://doi.org/10.1103/physreve.72.026610
17 https://doi.org/10.1103/physreve.73.046105
18 https://doi.org/10.1103/physrevlett.71.2401
19 https://doi.org/10.1103/physrevlett.74.2694
20 https://doi.org/10.1103/physrevlett.78.2690
21 https://doi.org/10.1103/physrevlett.95.040602
22 https://doi.org/10.1103/physrevlett.96.050601
23 https://doi.org/10.1103/physrevlett.98.080602
24 https://doi.org/10.1103/revmodphys.15.1
25 https://doi.org/10.1119/1.1971557
26 https://doi.org/10.1364/josaa.12.000834
27 schema:datePublished 2013-09
28 schema:datePublishedReg 2013-09-01
29 schema:description In this work the measured variable, such as temperature, is a random variable showing fluctuations. The loss of information caused by diffusion waves in non-destructive testing can be described by stochastic processes. In non-destructive imaging, the information about the spatial pattern of a samples interior has to be transferred to the sample surface by certain waves, e.g., thermal waves. At the sample surface these waves can be detected and the interior structure is reconstructed from the measured signals. The amount of information about the interior of the sample, which can be gained from the detected waves on the sample surface, is essentially influenced by the propagation from its excitation to the surface. Diffusion causes entropy production and information loss for the propagating waves. Mandelis has developed a unifying framework for treating diverse diffusion-related periodic phenomena under the global mathematical label of diffusion-wave fields, such as thermal waves. Thermography uses the time-dependent diffusion of heat (either pulsed or modulated periodically) which goes along with entropy production and a loss of information. Several attempts have been made to compensate for this diffusive effect to get a higher resolution for the reconstructed images of the samples interior. In this work it is shown that fluctuations limit this compensation. Therefore, the spatial resolution for non-destructive imaging at a certain depth is also limited by theory.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N56b947add71541b0a6264f369d94859f
34 Nf9d855f25cdb40e794f1d9ef02aaa893
35 sg:journal.1043587
36 schema:name Limits of Spatial Resolution for Thermography and Other Non-destructive Imaging Methods Based on Diffusion Waves
37 schema:pagination 1617-1632
38 schema:productId N0c997316fbdf4590b86123e9e70f28dc
39 N117e9b3e395a48d9adfdfee3dfd0fafe
40 N7f643c9dc61b463db952d0221a88922c
41 Ndc072853df324ab7b04da087569a82a4
42 Nece39098a2874014a18501e79b4b2e1f
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012732879
44 https://doi.org/10.1007/s10765-013-1513-0
45 schema:sdDatePublished 2019-04-11T13:10
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N841dbf9aa3c4431095e051ca29e274a0
48 schema:url http://link.springer.com/10.1007%2Fs10765-013-1513-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N03496dc494644a49adec1ee1ffbbc0b7 rdf:first sg:person.010011123544.67
53 rdf:rest rdf:nil
54 N0c997316fbdf4590b86123e9e70f28dc schema:name doi
55 schema:value 10.1007/s10765-013-1513-0
56 rdf:type schema:PropertyValue
57 N117e9b3e395a48d9adfdfee3dfd0fafe schema:name dimensions_id
58 schema:value pub.1012732879
59 rdf:type schema:PropertyValue
60 N56b947add71541b0a6264f369d94859f schema:volumeNumber 34
61 rdf:type schema:PublicationVolume
62 N74de713083274b678e0dd064d63e45b7 schema:name FHOOE Forschungs & Entwicklungs GmbH, Stelzhamerstr. 23, 4600, Wels, Austria
63 rdf:type schema:Organization
64 N7f643c9dc61b463db952d0221a88922c schema:name readcube_id
65 schema:value 3ca84b0162a452af060b031eea067c51e996b08d499de11b903211473f4a9a3d
66 rdf:type schema:PropertyValue
67 N841dbf9aa3c4431095e051ca29e274a0 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nb160beae469b450f8c3826fcf6ea92b4 rdf:first sg:person.01035176677.43
70 rdf:rest N03496dc494644a49adec1ee1ffbbc0b7
71 Ndc072853df324ab7b04da087569a82a4 schema:name pubmed_id
72 schema:value 24347758
73 rdf:type schema:PropertyValue
74 Nece39098a2874014a18501e79b4b2e1f schema:name nlm_unique_id
75 schema:value 101532093
76 rdf:type schema:PropertyValue
77 Nf9d855f25cdb40e794f1d9ef02aaa893 schema:issueNumber 8-9
78 rdf:type schema:PublicationIssue
79 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
83 schema:name Other Physical Sciences
84 rdf:type schema:DefinedTerm
85 sg:grant.7580426 http://pending.schema.org/fundedItem sg:pub.10.1007/s10765-013-1513-0
86 rdf:type schema:MonetaryGrant
87 sg:journal.1043587 schema:issn 0195-928X
88 1572-9567
89 schema:name International Journal of Thermophysics
90 rdf:type schema:Periodical
91 sg:person.010011123544.67 schema:affiliation N74de713083274b678e0dd064d63e45b7
92 schema:familyName Hendorfer
93 schema:givenName Günther
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011123544.67
95 rdf:type schema:Person
96 sg:person.01035176677.43 schema:affiliation https://www.grid.ac/institutes/grid.451841.d
97 schema:familyName Burgholzer
98 schema:givenName Peter
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035176677.43
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-4757-3548-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048962475
102 https://doi.org/10.1007/978-1-4757-3548-2
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-662-03709-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003339179
105 https://doi.org/10.1007/978-3-662-03709-6
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/j.1538-7305.1948.tb00917.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038869286
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/1367-2630/11/7/073008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006515838
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrev.32.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060445024
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrev.32.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060445139
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrev.36.823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060445995
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrev.83.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458088
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrev.86.702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459284
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrev.88.1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459815
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreve.60.2721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031806362
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.72.026610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733413
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.73.046105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021492080
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.71.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807744
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.74.2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031383800
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.78.2690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050584535
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.95.040602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041733512
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.96.050601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714027
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.98.080602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008080779
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/revmodphys.15.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837181
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1119/1.1971557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062243570
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/josaa.12.000834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065157596
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.451841.d schema:alternateName Research Center for Non Destructive Testing (Austria)
150 schema:name Christian Doppler Laboratory for Photoacoustic Imaging and Laser Ultrasonics, Research Center for Non Destructive Testing GmbH (RECENDT), Altenberger Strasse 69, 4040, Linz, Austria
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...