Evaluation of Power Heat Losses in Multidomain Iron Particles Under the Influence of AC Magnetic Field in RF Range View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-01-04

AUTHORS

Andrzej Skumiel, Milena Kaczmarek-Klinowska, Milan Timko, Matus Molcan, Michał Rajnak

ABSTRACT

The magnetic properties and hyperthermia effect were studied in a magnetorheological fluid (MRF) containing iron particles of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \upmu \mathrm{m}\, \text{ to}\, 5 \,\upmu \mathrm{m}$$\end{document} in diameter. The measurements showed that the magnetization in the saturation state reaches a value of 171 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ A}\cdot \text{ m}^{2}\cdot \mathrm{kg}^{-1}$$\end{document} with very small values of coercivity and remanence. They also showed the ferromagnetic behavior in the system together with a value of the magnetic susceptibility of 1.7. Theoretical and experimental results of the calorimetric effect investigation under a changeable magnetic field of high frequency (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = 504$$\end{document} kHz) in an MRF will be presented in the article. The sample was subjected to an alternating magnetic field of different strengths (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H = 0$$\end{document} to 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ kA}\cdot \text{ m}^{-1})$$\end{document}. It results from a theoretical analysis that the heat power density (released in the MRF sample) referenced to the eddy current is proportional to the square of frequency, the magnetic field amplitude, and the iron grain diameter. Experimental results indicate that there are some reasons for the released heat energy such as: energy losses from magnetic hysteresis and eddy currents induced in the iron grains. If the magnetic field intensity amplitude grows, the participation of losses connected with magnetic hysteresis is increased. From the calorimetric measurements, the conclusion is as follows: for a magnetic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<1946\,\text{ A}\cdot \mathrm{m}^{-1}$$\end{document}, the eddy current processes dominate in the heat generation mechanism, whereas hysteresis processes for the total release of thermal energy dominate for higher magnetic fields. Both mechanisms take equal parts in heating the tested sample at a magnetic field intensity amplitude \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H= 1946\,\text{ A}\cdot \mathrm{m}^{-1}$$\end{document}. The specific absorption rate referenced to the mass unit of the MRF sample at the amplitude of the magnetic field strength 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ kA}\cdot \mathrm{m}^{-1}$$\end{document} equals 24.94 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ W} \cdot \mathrm{kg}^{-1}$$\end{document} at a frequency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} = 504 kHz. More... »

PAGES

655-666

References to SciGraph publications

  • 2011-07-07. Thermophysical and Magnetic Properties of Carbon Beads Containing Nickel Nanocrystallites in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2007-01-12. Heating Effect in Biocompatible Magnetic Fluid in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10765-012-1380-0

    DOI

    http://dx.doi.org/10.1007/s10765-012-1380-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042017803


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland", 
              "id": "http://www.grid.ac/institutes/grid.5633.3", 
              "name": [
                "Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Skumiel", 
            "givenName": "Andrzej", 
            "id": "sg:person.016224623753.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224623753.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland", 
              "id": "http://www.grid.ac/institutes/grid.5633.3", 
              "name": [
                "Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaczmarek-Klinowska", 
            "givenName": "Milena", 
            "id": "sg:person.015763634367.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015763634367.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.435184.f", 
              "name": [
                "Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Timko", 
            "givenName": "Milan", 
            "id": "sg:person.0744566101.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744566101.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.435184.f", 
              "name": [
                "Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molcan", 
            "givenName": "Matus", 
            "id": "sg:person.015140541177.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140541177.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.435184.f", 
              "name": [
                "Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rajnak", 
            "givenName": "Micha\u0142", 
            "id": "sg:person.01251045361.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251045361.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10765-011-1029-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032227423", 
              "https://doi.org/10.1007/s10765-011-1029-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10765-006-0138-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000864395", 
              "https://doi.org/10.1007/s10765-006-0138-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-01-04", 
        "datePublishedReg": "2013-01-04", 
        "description": "The magnetic properties and hyperthermia effect were studied in a magnetorheological fluid (MRF) containing iron particles of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1 \\upmu \\mathrm{m}\\, \\text{ to}\\, 5 \\,\\upmu \\mathrm{m}$$\\end{document} in diameter. The measurements showed that the magnetization in the saturation state reaches a value of 171 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text{ A}\\cdot \\text{ m}^{2}\\cdot \\mathrm{kg}^{-1}$$\\end{document} with very small values of coercivity and remanence. They also showed the ferromagnetic behavior in the system together with a value of the magnetic susceptibility of 1.7. Theoretical and experimental results of the calorimetric effect investigation under a changeable magnetic field of high frequency (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f = 504$$\\end{document} kHz) in an MRF will be presented in the article. The sample was subjected to an alternating magnetic field of different strengths (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H = 0$$\\end{document} to 4 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text{ kA}\\cdot \\text{ m}^{-1})$$\\end{document}. It results from a theoretical analysis that the heat power density (released in the MRF sample) referenced to the eddy current is proportional to the square of frequency, the magnetic field amplitude, and the iron grain diameter. Experimental results indicate that there are some reasons for the released heat energy such as: energy losses from magnetic hysteresis and eddy currents induced in the iron grains. If the magnetic field intensity amplitude grows, the participation of losses connected with magnetic hysteresis is increased. From the calorimetric measurements, the conclusion is as follows: for a magnetic field \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H<1946\\,\\text{ A}\\cdot \\mathrm{m}^{-1}$$\\end{document}, the eddy current processes dominate in the heat generation mechanism, whereas hysteresis processes for the total release of thermal energy dominate for higher magnetic fields. Both mechanisms take equal parts in heating the tested sample at a magnetic field intensity amplitude \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H= 1946\\,\\text{ A}\\cdot \\mathrm{m}^{-1}$$\\end{document}. The specific absorption rate referenced to the mass unit of the MRF sample at the amplitude of the magnetic field strength 4 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text{ kA}\\cdot \\mathrm{m}^{-1}$$\\end{document} equals 24.94 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text{ W} \\cdot \\mathrm{kg}^{-1}$$\\end{document} at a frequency \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f$$\\end{document} = 504 kHz.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10765-012-1380-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4365794", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7419252", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043587", 
            "issn": [
              "0195-928X", 
              "1572-9567"
            ], 
            "name": "International Journal of Thermophysics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "magnetorheological fluid", 
          "magnetic field", 
          "eddy currents", 
          "heat power density", 
          "heat generation mechanisms", 
          "eddy current processes", 
          "changeable magnetic field", 
          "intensity amplitude", 
          "magnetic hysteresis", 
          "AC magnetic field", 
          "experimental results", 
          "power density", 
          "magnetic field amplitude", 
          "heat energy", 
          "high magnetic fields", 
          "iron particles", 
          "square of frequency", 
          "grain diameter", 
          "heat loss", 
          "MRF samples", 
          "hysteresis process", 
          "RF range", 
          "iron grains", 
          "magnetic properties", 
          "field amplitude", 
          "generation mechanism", 
          "ferromagnetic behavior", 
          "effect investigation", 
          "specific absorption rate", 
          "energy loss", 
          "magnetic susceptibility", 
          "theoretical analysis", 
          "energy dominates", 
          "hysteresis", 
          "small values", 
          "strength 4", 
          "current", 
          "absorption rate", 
          "calorimetric measurements", 
          "amplitude", 
          "total release", 
          "diameter", 
          "field", 
          "multidomain iron", 
          "coercivity", 
          "saturation state", 
          "current process", 
          "different strengths", 
          "hyperthermia effect", 
          "measurements", 
          "kHz", 
          "magnetization", 
          "frequency", 
          "particles", 
          "high frequency", 
          "strength", 
          "grains", 
          "process", 
          "remanence", 
          "energy", 
          "properties", 
          "density", 
          "squares", 
          "fluid", 
          "values", 
          "results", 
          "loss", 
          "iron", 
          "behavior", 
          "range", 
          "influence", 
          "dominates", 
          "system", 
          "samples", 
          "investigation", 
          "mass units", 
          "mechanism", 
          "equal parts", 
          "units", 
          "effect", 
          "state", 
          "rate", 
          "analysis", 
          "part", 
          "evaluation", 
          "release", 
          "reasons", 
          "susceptibility", 
          "article", 
          "conclusion", 
          "participation"
        ], 
        "name": "Evaluation of Power Heat Losses in Multidomain Iron Particles Under the Influence of AC Magnetic Field in RF Range", 
        "pagination": "655-666", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042017803"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10765-012-1380-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10765-012-1380-0", 
          "https://app.dimensions.ai/details/publication/pub.1042017803"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_613.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10765-012-1380-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1380-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1380-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1380-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1380-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      116 URIs      106 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10765-012-1380-0 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N015a31115a8e439183e72ba075160449
    4 schema:citation sg:pub.10.1007/s10765-006-0138-y
    5 sg:pub.10.1007/s10765-011-1029-4
    6 schema:datePublished 2013-01-04
    7 schema:datePublishedReg 2013-01-04
    8 schema:description The magnetic properties and hyperthermia effect were studied in a magnetorheological fluid (MRF) containing iron particles of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \upmu \mathrm{m}\, \text{ to}\, 5 \,\upmu \mathrm{m}$$\end{document} in diameter. The measurements showed that the magnetization in the saturation state reaches a value of 171 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ A}\cdot \text{ m}^{2}\cdot \mathrm{kg}^{-1}$$\end{document} with very small values of coercivity and remanence. They also showed the ferromagnetic behavior in the system together with a value of the magnetic susceptibility of 1.7. Theoretical and experimental results of the calorimetric effect investigation under a changeable magnetic field of high frequency (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f = 504$$\end{document} kHz) in an MRF will be presented in the article. The sample was subjected to an alternating magnetic field of different strengths (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H = 0$$\end{document} to 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ kA}\cdot \text{ m}^{-1})$$\end{document}. It results from a theoretical analysis that the heat power density (released in the MRF sample) referenced to the eddy current is proportional to the square of frequency, the magnetic field amplitude, and the iron grain diameter. Experimental results indicate that there are some reasons for the released heat energy such as: energy losses from magnetic hysteresis and eddy currents induced in the iron grains. If the magnetic field intensity amplitude grows, the participation of losses connected with magnetic hysteresis is increased. From the calorimetric measurements, the conclusion is as follows: for a magnetic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<1946\,\text{ A}\cdot \mathrm{m}^{-1}$$\end{document}, the eddy current processes dominate in the heat generation mechanism, whereas hysteresis processes for the total release of thermal energy dominate for higher magnetic fields. Both mechanisms take equal parts in heating the tested sample at a magnetic field intensity amplitude \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H= 1946\,\text{ A}\cdot \mathrm{m}^{-1}$$\end{document}. The specific absorption rate referenced to the mass unit of the MRF sample at the amplitude of the magnetic field strength 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ kA}\cdot \mathrm{m}^{-1}$$\end{document} equals 24.94 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ W} \cdot \mathrm{kg}^{-1}$$\end{document} at a frequency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} = 504 kHz.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N0fef55978522474a9211f71d8be0fc1c
    12 Na261c55bdc30432892666f9f86d2af56
    13 sg:journal.1043587
    14 schema:keywords AC magnetic field
    15 MRF samples
    16 RF range
    17 absorption rate
    18 amplitude
    19 analysis
    20 article
    21 behavior
    22 calorimetric measurements
    23 changeable magnetic field
    24 coercivity
    25 conclusion
    26 current
    27 current process
    28 density
    29 diameter
    30 different strengths
    31 dominates
    32 eddy current processes
    33 eddy currents
    34 effect
    35 effect investigation
    36 energy
    37 energy dominates
    38 energy loss
    39 equal parts
    40 evaluation
    41 experimental results
    42 ferromagnetic behavior
    43 field
    44 field amplitude
    45 fluid
    46 frequency
    47 generation mechanism
    48 grain diameter
    49 grains
    50 heat energy
    51 heat generation mechanisms
    52 heat loss
    53 heat power density
    54 high frequency
    55 high magnetic fields
    56 hyperthermia effect
    57 hysteresis
    58 hysteresis process
    59 influence
    60 intensity amplitude
    61 investigation
    62 iron
    63 iron grains
    64 iron particles
    65 kHz
    66 loss
    67 magnetic field
    68 magnetic field amplitude
    69 magnetic hysteresis
    70 magnetic properties
    71 magnetic susceptibility
    72 magnetization
    73 magnetorheological fluid
    74 mass units
    75 measurements
    76 mechanism
    77 multidomain iron
    78 part
    79 participation
    80 particles
    81 power density
    82 process
    83 properties
    84 range
    85 rate
    86 reasons
    87 release
    88 remanence
    89 results
    90 samples
    91 saturation state
    92 small values
    93 specific absorption rate
    94 square of frequency
    95 squares
    96 state
    97 strength
    98 strength 4
    99 susceptibility
    100 system
    101 theoretical analysis
    102 total release
    103 units
    104 values
    105 schema:name Evaluation of Power Heat Losses in Multidomain Iron Particles Under the Influence of AC Magnetic Field in RF Range
    106 schema:pagination 655-666
    107 schema:productId N168406d3c5e64175a89193274c4864a2
    108 N554f0ac373924228be452911756a6e50
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042017803
    110 https://doi.org/10.1007/s10765-012-1380-0
    111 schema:sdDatePublished 2022-10-01T06:39
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Nf8e77a93cc914078a0ff48f68536dc75
    114 schema:url https://doi.org/10.1007/s10765-012-1380-0
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N015a31115a8e439183e72ba075160449 rdf:first sg:person.016224623753.70
    119 rdf:rest N0cb19544e279441e8ab4e77d42483a9e
    120 N0953718045ea430db485e63d4e03e5dd rdf:first sg:person.0744566101.57
    121 rdf:rest Nbd59484232b844cba5f4ea7eba1f6345
    122 N0cb19544e279441e8ab4e77d42483a9e rdf:first sg:person.015763634367.01
    123 rdf:rest N0953718045ea430db485e63d4e03e5dd
    124 N0fef55978522474a9211f71d8be0fc1c schema:volumeNumber 34
    125 rdf:type schema:PublicationVolume
    126 N168406d3c5e64175a89193274c4864a2 schema:name dimensions_id
    127 schema:value pub.1042017803
    128 rdf:type schema:PropertyValue
    129 N554f0ac373924228be452911756a6e50 schema:name doi
    130 schema:value 10.1007/s10765-012-1380-0
    131 rdf:type schema:PropertyValue
    132 Na261c55bdc30432892666f9f86d2af56 schema:issueNumber 4
    133 rdf:type schema:PublicationIssue
    134 Nbd59484232b844cba5f4ea7eba1f6345 rdf:first sg:person.015140541177.71
    135 rdf:rest Nc9cc45816bf047a188e9138f9d04c8df
    136 Nc9cc45816bf047a188e9138f9d04c8df rdf:first sg:person.01251045361.93
    137 rdf:rest rdf:nil
    138 Nf8e77a93cc914078a0ff48f68536dc75 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Engineering
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Interdisciplinary Engineering
    145 rdf:type schema:DefinedTerm
    146 sg:grant.4365794 http://pending.schema.org/fundedItem sg:pub.10.1007/s10765-012-1380-0
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.7419252 http://pending.schema.org/fundedItem sg:pub.10.1007/s10765-012-1380-0
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1043587 schema:issn 0195-928X
    151 1572-9567
    152 schema:name International Journal of Thermophysics
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.01251045361.93 schema:affiliation grid-institutes:grid.435184.f
    156 schema:familyName Rajnak
    157 schema:givenName Michał
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251045361.93
    159 rdf:type schema:Person
    160 sg:person.015140541177.71 schema:affiliation grid-institutes:grid.435184.f
    161 schema:familyName Molcan
    162 schema:givenName Matus
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015140541177.71
    164 rdf:type schema:Person
    165 sg:person.015763634367.01 schema:affiliation grid-institutes:grid.5633.3
    166 schema:familyName Kaczmarek-Klinowska
    167 schema:givenName Milena
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015763634367.01
    169 rdf:type schema:Person
    170 sg:person.016224623753.70 schema:affiliation grid-institutes:grid.5633.3
    171 schema:familyName Skumiel
    172 schema:givenName Andrzej
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224623753.70
    174 rdf:type schema:Person
    175 sg:person.0744566101.57 schema:affiliation grid-institutes:grid.435184.f
    176 schema:familyName Timko
    177 schema:givenName Milan
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744566101.57
    179 rdf:type schema:Person
    180 sg:pub.10.1007/s10765-006-0138-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000864395
    181 https://doi.org/10.1007/s10765-006-0138-y
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s10765-011-1029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032227423
    184 https://doi.org/10.1007/s10765-011-1029-4
    185 rdf:type schema:CreativeWork
    186 grid-institutes:grid.435184.f schema:alternateName Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
    187 schema:name Institute of Experimental Physics, Department of Magnetism, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
    188 rdf:type schema:Organization
    189 grid-institutes:grid.5633.3 schema:alternateName Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
    190 schema:name Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...