Does the Viscosity Exponent Derive from Ultrasonic Attenuation Spectra? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-02-29

AUTHORS

J. K. Bhattacharjee, S. Z. Mirzaev, U. Kaatze

ABSTRACT

Based on a representation of the sound velocity of critical liquids in terms of a frequency-dependent complex specific heat at constant pressure, a simple relation between the low-frequency normalized sonic attenuation coefficient and the correlation length of fluctuations is derived. This relation provides a promising alternative for the determination of the dynamics exponent and thus the critical exponent of the shear viscosity. Sonic attenuation data from the literature, measured at frequencies down to 50 kHz, are re-evaluated with a view of the viscosity exponent determination. It is found that only in a small temperature range, the major requirement of the approach is fulfilled with the available data. Close to the critical temperature, the frequencies of measurement are still insufficiently small as compared to the inverse relaxation time of order parameter fluctuations. Criteria for future experiments are discussed briefly. More... »

PAGES

469-483

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10765-012-1167-3

DOI

http://dx.doi.org/10.1007/s10765-012-1167-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010124784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "S. N. Bose National Center for Basic Sciences, Salt Lake, 700098, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.452759.8", 
          "name": [
            "S. N. Bose National Center for Basic Sciences, Salt Lake, 700098, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "J. K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heat Physics Department, Uzbek Academy of Sciences, Katartal Street 28, 100135, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.419209.7", 
          "name": [
            "Heat Physics Department, Uzbek Academy of Sciences, Katartal Street 28, 100135, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirzaev", 
        "givenName": "S. Z.", 
        "id": "sg:person.0657667157.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657667157.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drittes Physikalisches Institut, Georg-August-Universit\u00e4t, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Drittes Physikalisches Institut, Georg-August-Universit\u00e4t, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaatze", 
        "givenName": "U.", 
        "id": "sg:person.01034402055.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034402055.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00504437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014013459", 
          "https://doi.org/10.1007/bf00504437"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02-29", 
    "datePublishedReg": "2012-02-29", 
    "description": "Based on a representation of the sound velocity of critical liquids in terms of a frequency-dependent complex specific heat at constant pressure, a simple relation between the low-frequency normalized sonic attenuation coefficient and the correlation length of fluctuations is derived. This relation provides a promising alternative for the determination of the dynamics exponent and thus the critical exponent of the shear viscosity. Sonic attenuation data from the literature, measured at frequencies down to 50\u00a0kHz, are re-evaluated with a view of the viscosity exponent determination. It is found that only in a small temperature range, the major requirement of the approach is fulfilled with the available data. Close to the critical temperature, the frequencies of measurement are still insufficiently small as compared to the inverse relaxation time of order parameter fluctuations. Criteria for future experiments are discussed briefly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10765-012-1167-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043587", 
        "issn": [
          "0195-928X", 
          "1572-9567"
        ], 
        "name": "International Journal of Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "major requirement", 
      "attenuation coefficient", 
      "fluctuations", 
      "attenuation data", 
      "small temperature range", 
      "available data", 
      "frequency of measurement", 
      "ultrasonic attenuation spectra", 
      "representation", 
      "sound velocity", 
      "velocity", 
      "critical liquid", 
      "liquid", 
      "terms", 
      "complex specific heat", 
      "specific heat", 
      "heat", 
      "constant pressure", 
      "simple relation", 
      "correlation length", 
      "promising alternative", 
      "shear viscosity", 
      "viscosity", 
      "data", 
      "view", 
      "temperature range", 
      "requirements", 
      "critical temperature", 
      "temperature", 
      "relaxation time", 
      "time", 
      "order parameter fluctuations", 
      "parameter fluctuations", 
      "experiments", 
      "derive", 
      "attenuation spectra", 
      "pressure", 
      "relation", 
      "coefficient", 
      "length", 
      "alternative", 
      "determination", 
      "dynamic exponent", 
      "exponent", 
      "critical exponents", 
      "literature", 
      "frequency", 
      "range", 
      "approach", 
      "measurements", 
      "inverse relaxation time", 
      "criteria", 
      "future experiments", 
      "spectra", 
      "frequency-dependent complex specific heat", 
      "low-frequency normalized sonic attenuation coefficient", 
      "normalized sonic attenuation coefficient", 
      "sonic attenuation coefficient", 
      "Sonic attenuation data", 
      "viscosity exponent determination", 
      "exponent determination", 
      "Viscosity Exponent Derive", 
      "Exponent Derive"
    ], 
    "name": "Does the Viscosity Exponent Derive from Ultrasonic Attenuation Spectra?", 
    "pagination": "469-483", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010124784"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10765-012-1167-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10765-012-1167-3", 
      "https://app.dimensions.ai/details/publication/pub.1010124784"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10765-012-1167-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1167-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1167-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1167-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-012-1167-3'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      93 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10765-012-1167-3 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:03
4 anzsrc-for:0306
5 anzsrc-for:09
6 anzsrc-for:0904
7 schema:author N6a59b79740aa4c8db6ed367ced196f60
8 schema:citation sg:pub.10.1007/bf00504437
9 schema:datePublished 2012-02-29
10 schema:datePublishedReg 2012-02-29
11 schema:description Based on a representation of the sound velocity of critical liquids in terms of a frequency-dependent complex specific heat at constant pressure, a simple relation between the low-frequency normalized sonic attenuation coefficient and the correlation length of fluctuations is derived. This relation provides a promising alternative for the determination of the dynamics exponent and thus the critical exponent of the shear viscosity. Sonic attenuation data from the literature, measured at frequencies down to 50 kHz, are re-evaluated with a view of the viscosity exponent determination. It is found that only in a small temperature range, the major requirement of the approach is fulfilled with the available data. Close to the critical temperature, the frequencies of measurement are still insufficiently small as compared to the inverse relaxation time of order parameter fluctuations. Criteria for future experiments are discussed briefly.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf Nb123393b160f4aefb0f40988c7d0a995
16 Ncb2c322164d2409986207510e7433a56
17 sg:journal.1043587
18 schema:keywords Exponent Derive
19 Sonic attenuation data
20 Viscosity Exponent Derive
21 alternative
22 approach
23 attenuation coefficient
24 attenuation data
25 attenuation spectra
26 available data
27 coefficient
28 complex specific heat
29 constant pressure
30 correlation length
31 criteria
32 critical exponents
33 critical liquid
34 critical temperature
35 data
36 derive
37 determination
38 dynamic exponent
39 experiments
40 exponent
41 exponent determination
42 fluctuations
43 frequency
44 frequency of measurement
45 frequency-dependent complex specific heat
46 future experiments
47 heat
48 inverse relaxation time
49 length
50 liquid
51 literature
52 low-frequency normalized sonic attenuation coefficient
53 major requirement
54 measurements
55 normalized sonic attenuation coefficient
56 order parameter fluctuations
57 parameter fluctuations
58 pressure
59 promising alternative
60 range
61 relation
62 relaxation time
63 representation
64 requirements
65 shear viscosity
66 simple relation
67 small temperature range
68 sonic attenuation coefficient
69 sound velocity
70 specific heat
71 spectra
72 temperature
73 temperature range
74 terms
75 time
76 ultrasonic attenuation spectra
77 velocity
78 view
79 viscosity
80 viscosity exponent determination
81 schema:name Does the Viscosity Exponent Derive from Ultrasonic Attenuation Spectra?
82 schema:pagination 469-483
83 schema:productId N85d4065d385f41f4a77d29460ae9ae9e
84 N8f4491db239240e99ad6d33e3f4c88df
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010124784
86 https://doi.org/10.1007/s10765-012-1167-3
87 schema:sdDatePublished 2021-11-01T18:18
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nc1a98e7aa8974ca8bf0dac23d82a1b70
90 schema:url https://doi.org/10.1007/s10765-012-1167-3
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N11479e48b3da4664a496facf1e53cc62 rdf:first sg:person.0657667157.21
95 rdf:rest N4c92f21a70ce476585fff97ccade13b5
96 N4c92f21a70ce476585fff97ccade13b5 rdf:first sg:person.01034402055.71
97 rdf:rest rdf:nil
98 N6a59b79740aa4c8db6ed367ced196f60 rdf:first sg:person.015365735162.55
99 rdf:rest N11479e48b3da4664a496facf1e53cc62
100 N85d4065d385f41f4a77d29460ae9ae9e schema:name doi
101 schema:value 10.1007/s10765-012-1167-3
102 rdf:type schema:PropertyValue
103 N8f4491db239240e99ad6d33e3f4c88df schema:name dimensions_id
104 schema:value pub.1010124784
105 rdf:type schema:PropertyValue
106 Nb123393b160f4aefb0f40988c7d0a995 schema:volumeNumber 33
107 rdf:type schema:PublicationVolume
108 Nc1a98e7aa8974ca8bf0dac23d82a1b70 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Ncb2c322164d2409986207510e7433a56 schema:issueNumber 3
111 rdf:type schema:PublicationIssue
112 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
116 schema:name Classical Physics
117 rdf:type schema:DefinedTerm
118 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
119 schema:name Chemical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Chemistry (incl. Structural)
123 rdf:type schema:DefinedTerm
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
128 schema:name Chemical Engineering
129 rdf:type schema:DefinedTerm
130 sg:journal.1043587 schema:issn 0195-928X
131 1572-9567
132 schema:name International Journal of Thermophysics
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01034402055.71 schema:affiliation grid-institutes:grid.7450.6
136 schema:familyName Kaatze
137 schema:givenName U.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034402055.71
139 rdf:type schema:Person
140 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.452759.8
141 schema:familyName Bhattacharjee
142 schema:givenName J. K.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
144 rdf:type schema:Person
145 sg:person.0657667157.21 schema:affiliation grid-institutes:grid.419209.7
146 schema:familyName Mirzaev
147 schema:givenName S. Z.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657667157.21
149 rdf:type schema:Person
150 sg:pub.10.1007/bf00504437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014013459
151 https://doi.org/10.1007/bf00504437
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.419209.7 schema:alternateName Heat Physics Department, Uzbek Academy of Sciences, Katartal Street 28, 100135, Tashkent, Uzbekistan
154 schema:name Heat Physics Department, Uzbek Academy of Sciences, Katartal Street 28, 100135, Tashkent, Uzbekistan
155 rdf:type schema:Organization
156 grid-institutes:grid.452759.8 schema:alternateName S. N. Bose National Center for Basic Sciences, Salt Lake, 700098, Kolkata, India
157 schema:name S. N. Bose National Center for Basic Sciences, Salt Lake, 700098, Kolkata, India
158 rdf:type schema:Organization
159 grid-institutes:grid.7450.6 schema:alternateName Drittes Physikalisches Institut, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
160 schema:name Drittes Physikalisches Institut, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...