Diffusion of Methylene Blue in Phantoms of Agar Using a Photoacoustic Technique View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05

AUTHORS

L. Vilca-Quispe, J. J. Alvarado-Gil, P. Quintana, J. Ordonez-Miranda

ABSTRACT

In this work, the kinetics of diffusion of methylene blue in agar aqueous solution is studied using a photoacoustic technique. Two agar phantoms solutions in water with a relation of mass/volume of 0.01% and 0.05% were analyzed. The study was performed using a modified Rosencwaig photoacoustic cell that is enclosed by transparent windows, on both sides. The sample is deposited directly on top of the upper window. A red light beam, at a fixed modulation frequency, is sent through the lower window illuminating the sample and inducing the photoacoustic effect inside the closed chamber of the cell. At the beginning of the experiment, a droplet of 100μL of agar solution is deposited; afterwards, the signal stabilizes, and 10μL of methylene blue aqueous solution (0.0125 g · mL−1) is added to the surface of the agar. During the first seconds of the experiment, the photoacoustic signal amplitude increases followed by a gradual and long decay. Results for modulation frequencies in the range from 10Hz to 80Hz for both agar concentrations are presented. A simple theoretical approach is presented to analyze the experimental data. It is demonstrated that the kinetics of the process can be parameterized as a function of the changes of an effective optical absorption coefficient. From these results, the characteristic time, in which the dye diffusion process stabilizes, is obtained. It is found that this time is larger for samples with a higher agar concentration. These differences provide important results for biomedical sciences in which agar gels are used as phantoms resembling some of the properties of living organs and tissues. More... »

PAGES

987-997

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10765-010-0763-3

DOI

http://dx.doi.org/10.1007/s10765-010-0763-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049083500


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilca-Quispe", 
        "givenName": "L.", 
        "id": "sg:person.010617412131.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010617412131.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alvarado-Gil", 
        "givenName": "J. J.", 
        "id": "sg:person.013020276574.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020276574.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quintana", 
        "givenName": "P.", 
        "id": "sg:person.0615663102.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615663102.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Applied Physics Department, CINVESTAV-IPN Unidad M\u00e9rida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ordonez-Miranda", 
        "givenName": "J.", 
        "id": "sg:person.01242731434.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242731434.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003400000300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031418771", 
          "https://doi.org/10.1007/s003400000300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10765-007-0210-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010561402", 
          "https://doi.org/10.1007/s10765-007-0210-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-006-9906-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042129015", 
          "https://doi.org/10.1007/s11095-006-9906-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "In this work, the kinetics of diffusion of methylene blue in agar aqueous solution is studied using a photoacoustic technique. Two agar phantoms solutions in water with a relation of mass/volume of 0.01% and 0.05% were analyzed. The study was performed using a modified Rosencwaig photoacoustic cell that is enclosed by transparent windows, on both sides. The sample is deposited directly on top of the upper window. A red light beam, at a fixed modulation frequency, is sent through the lower window illuminating the sample and inducing the photoacoustic effect inside the closed chamber of the cell. At the beginning of the experiment, a droplet of 100\u03bcL of agar solution is deposited; afterwards, the signal stabilizes, and 10\u03bcL of methylene blue aqueous solution (0.0125\u00a0g \u00b7 mL\u22121) is added to the surface of the agar. During the first seconds of the experiment, the photoacoustic signal amplitude increases followed by a gradual and long decay. Results for modulation frequencies in the range from 10Hz to 80Hz for both agar concentrations are presented. A simple theoretical approach is presented to analyze the experimental data. It is demonstrated that the kinetics of the process can be parameterized as a function of the changes of an effective optical absorption coefficient. From these results, the characteristic time, in which the dye diffusion process stabilizes, is obtained. It is found that this time is larger for samples with a higher agar concentration. These differences provide important results for biomedical sciences in which agar gels are used as phantoms resembling some of the properties of living organs and tissues.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10765-010-0763-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043587", 
        "issn": [
          "0195-928X", 
          "1572-9567"
        ], 
        "name": "International Journal of Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4-5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "modulation frequency", 
      "effective optical absorption coefficient", 
      "photoacoustic technique", 
      "optical absorption coefficient", 
      "red light beam", 
      "dye diffusion process", 
      "light beam", 
      "absorption coefficient", 
      "photoacoustic effect", 
      "photoacoustic cell", 
      "transparent window", 
      "long decay", 
      "simple theoretical approach", 
      "signal amplitude increases", 
      "blue aqueous solution", 
      "characteristic time", 
      "methylene blue", 
      "experimental data", 
      "lower window", 
      "phantom", 
      "diffusion process", 
      "theoretical approach", 
      "amplitude increases", 
      "beam", 
      "upper window", 
      "kinetics of diffusion", 
      "window", 
      "decay", 
      "diffusion", 
      "important results", 
      "aqueous solution", 
      "blue", 
      "frequency", 
      "experiments", 
      "mass/volume", 
      "biomedical sciences", 
      "surface", 
      "technique", 
      "first second", 
      "properties", 
      "chamber", 
      "signals", 
      "range", 
      "samples", 
      "solution", 
      "top", 
      "coefficient", 
      "agar solution", 
      "seconds", 
      "droplets", 
      "kinetics", 
      "agar gel", 
      "results", 
      "agar concentration", 
      "process", 
      "time", 
      "water", 
      "work", 
      "high agar concentrations", 
      "function", 
      "effect", 
      "side", 
      "concentration", 
      "relation", 
      "gel", 
      "science", 
      "volume", 
      "increase", 
      "data", 
      "approach", 
      "changes", 
      "cells", 
      "study", 
      "beginning", 
      "differences", 
      "tissue", 
      "agar", 
      "organs"
    ], 
    "name": "Diffusion of Methylene Blue in Phantoms of Agar Using a Photoacoustic Technique", 
    "pagination": "987-997", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049083500"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10765-010-0763-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10765-010-0763-3", 
      "https://app.dimensions.ai/details/publication/pub.1049083500"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10765-010-0763-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-010-0763-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-010-0763-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-010-0763-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-010-0763-3'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      106 URIs      95 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10765-010-0763-3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3b3f4ede439e4d008c4286b2225bbde5
4 schema:citation sg:pub.10.1007/s003400000300
5 sg:pub.10.1007/s10765-007-0210-2
6 sg:pub.10.1007/s11095-006-9906-4
7 schema:datePublished 2010-05
8 schema:datePublishedReg 2010-05-01
9 schema:description In this work, the kinetics of diffusion of methylene blue in agar aqueous solution is studied using a photoacoustic technique. Two agar phantoms solutions in water with a relation of mass/volume of 0.01% and 0.05% were analyzed. The study was performed using a modified Rosencwaig photoacoustic cell that is enclosed by transparent windows, on both sides. The sample is deposited directly on top of the upper window. A red light beam, at a fixed modulation frequency, is sent through the lower window illuminating the sample and inducing the photoacoustic effect inside the closed chamber of the cell. At the beginning of the experiment, a droplet of 100μL of agar solution is deposited; afterwards, the signal stabilizes, and 10μL of methylene blue aqueous solution (0.0125 g · mL−1) is added to the surface of the agar. During the first seconds of the experiment, the photoacoustic signal amplitude increases followed by a gradual and long decay. Results for modulation frequencies in the range from 10Hz to 80Hz for both agar concentrations are presented. A simple theoretical approach is presented to analyze the experimental data. It is demonstrated that the kinetics of the process can be parameterized as a function of the changes of an effective optical absorption coefficient. From these results, the characteristic time, in which the dye diffusion process stabilizes, is obtained. It is found that this time is larger for samples with a higher agar concentration. These differences provide important results for biomedical sciences in which agar gels are used as phantoms resembling some of the properties of living organs and tissues.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N1117211d85cb407094cf00439469d631
13 Nc1ac5e4bf1ce40f49382020681812ac0
14 sg:journal.1043587
15 schema:keywords absorption coefficient
16 agar
17 agar concentration
18 agar gel
19 agar solution
20 amplitude increases
21 approach
22 aqueous solution
23 beam
24 beginning
25 biomedical sciences
26 blue
27 blue aqueous solution
28 cells
29 chamber
30 changes
31 characteristic time
32 coefficient
33 concentration
34 data
35 decay
36 differences
37 diffusion
38 diffusion process
39 droplets
40 dye diffusion process
41 effect
42 effective optical absorption coefficient
43 experimental data
44 experiments
45 first second
46 frequency
47 function
48 gel
49 high agar concentrations
50 important results
51 increase
52 kinetics
53 kinetics of diffusion
54 light beam
55 long decay
56 lower window
57 mass/volume
58 methylene blue
59 modulation frequency
60 optical absorption coefficient
61 organs
62 phantom
63 photoacoustic cell
64 photoacoustic effect
65 photoacoustic technique
66 process
67 properties
68 range
69 red light beam
70 relation
71 results
72 samples
73 science
74 seconds
75 side
76 signal amplitude increases
77 signals
78 simple theoretical approach
79 solution
80 study
81 surface
82 technique
83 theoretical approach
84 time
85 tissue
86 top
87 transparent window
88 upper window
89 volume
90 water
91 window
92 work
93 schema:name Diffusion of Methylene Blue in Phantoms of Agar Using a Photoacoustic Technique
94 schema:pagination 987-997
95 schema:productId Nd2f4425bd8b1419cafebd37d6c93d017
96 Ne169880a62ee4e92bc89295412dec02a
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049083500
98 https://doi.org/10.1007/s10765-010-0763-3
99 schema:sdDatePublished 2022-09-02T15:54
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N62260b2151e24d3790b17e049e7700c3
102 schema:url https://doi.org/10.1007/s10765-010-0763-3
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N1117211d85cb407094cf00439469d631 schema:issueNumber 4-5
107 rdf:type schema:PublicationIssue
108 N31e685e9404e4eadaf88ff52a940933e rdf:first sg:person.013020276574.49
109 rdf:rest Nf0fdfd20a735466293053f14678f630f
110 N3b3f4ede439e4d008c4286b2225bbde5 rdf:first sg:person.010617412131.64
111 rdf:rest N31e685e9404e4eadaf88ff52a940933e
112 N62260b2151e24d3790b17e049e7700c3 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N915ffb14f84a421b94d3c8eb0fe9fef7 rdf:first sg:person.01242731434.17
115 rdf:rest rdf:nil
116 Nc1ac5e4bf1ce40f49382020681812ac0 schema:volumeNumber 31
117 rdf:type schema:PublicationVolume
118 Nd2f4425bd8b1419cafebd37d6c93d017 schema:name dimensions_id
119 schema:value pub.1049083500
120 rdf:type schema:PropertyValue
121 Ne169880a62ee4e92bc89295412dec02a schema:name doi
122 schema:value 10.1007/s10765-010-0763-3
123 rdf:type schema:PropertyValue
124 Nf0fdfd20a735466293053f14678f630f rdf:first sg:person.0615663102.02
125 rdf:rest N915ffb14f84a421b94d3c8eb0fe9fef7
126 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
130 schema:name Other Physical Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1043587 schema:issn 0195-928X
133 1572-9567
134 schema:name International Journal of Thermophysics
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.010617412131.64 schema:affiliation grid-institutes:grid.512574.0
138 schema:familyName Vilca-Quispe
139 schema:givenName L.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010617412131.64
141 rdf:type schema:Person
142 sg:person.01242731434.17 schema:affiliation grid-institutes:grid.512574.0
143 schema:familyName Ordonez-Miranda
144 schema:givenName J.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242731434.17
146 rdf:type schema:Person
147 sg:person.013020276574.49 schema:affiliation grid-institutes:grid.512574.0
148 schema:familyName Alvarado-Gil
149 schema:givenName J. J.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020276574.49
151 rdf:type schema:Person
152 sg:person.0615663102.02 schema:affiliation grid-institutes:grid.512574.0
153 schema:familyName Quintana
154 schema:givenName P.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615663102.02
156 rdf:type schema:Person
157 sg:pub.10.1007/s003400000300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031418771
158 https://doi.org/10.1007/s003400000300
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10765-007-0210-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010561402
161 https://doi.org/10.1007/s10765-007-0210-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11095-006-9906-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042129015
164 https://doi.org/10.1007/s11095-006-9906-4
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.512574.0 schema:alternateName Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, México
167 schema:name Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera Antigua a Progreso km. 6, Col. Gonzalo Guerrero, CP 97310, Merida, Yucatan, México
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...