Saturated Liquid Densities for 33 Binary Refrigerant Mixtures Based on the ISM Equation of State View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-05

AUTHORS

Z. Sharafi, A. Boushehri

ABSTRACT

In this work, the ISM equation of state based on statistical-mechanical perturbation theory has been extended to liquid refrigerant mixtures by using correlations of Boushehri and Mason. Three temperature-dependent parameters are needed to use the equation of state: the second virial coefficient, B2(T), an effective van der Waals covolume, b(T), and a scaling factor, α (T). The second virial coefficients are calculated from a correlation based on the heat of vaporization, ΔHvap, and the liquid density at the normal boiling point, ρnb. α(T) and b(T) can also be calculated from second virial coefficients by a scaling rule. The theory has considerable predictive power, since it permits the construction of the PVT surface from the heat of vaporization and the liquid density at the normal boiling point. The equation of state was tested on 33 liquid mixtures from 12 refrigerants. The results indicate that the liquid densities can be predicted to at most 2.8% over a wide range of temperatures, 170–369 K. More... »

PAGES

785-794

References to SciGraph publications

  • 2000-09. Equation of State for Nonpolar Fluids: Prediction from Boiling Point Constants in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1999-09. The ISM Equation of State Applied to Refrigerants in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1993-07. Equation of state for compressed liquids and their mixtures from the cohesive energy density in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10765-005-5577-3

    DOI

    http://dx.doi.org/10.1007/s10765-005-5577-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045479036


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shiraz University", 
              "id": "https://www.grid.ac/institutes/grid.412573.6", 
              "name": [
                "Department of Chemistry, College of Sciences, Shiraz University, 71454, Shiraz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharafi", 
            "givenName": "Z.", 
            "id": "sg:person.016461714035.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461714035.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shiraz University", 
              "id": "https://www.grid.ac/institutes/grid.412573.6", 
              "name": [
                "Department of Chemistry, College of Sciences, Shiraz University, 71454, Shiraz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boushehri", 
            "givenName": "A.", 
            "id": "sg:person.013626026353.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626026353.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00502102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001009435", 
              "https://doi.org/10.1007/bf00502102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00502102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001009435", 
              "https://doi.org/10.1007/bf00502102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026498021221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015353054", 
              "https://doi.org/10.1023/a:1026498021221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021401407904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016801664", 
              "https://doi.org/10.1023/a:1021401407904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(98)00395-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017739705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(96)03186-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030713053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(99)00328-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034977082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00268979200100681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040726390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie010897o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055595920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie010897o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055595920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1649997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057729957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.457252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058035264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.460684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058038695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.69.1731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063118616"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-05", 
        "datePublishedReg": "2005-05-01", 
        "description": "In this work, the ISM equation of state based on statistical-mechanical perturbation theory has been extended to liquid refrigerant mixtures by using correlations of Boushehri and Mason. Three temperature-dependent parameters are needed to use the equation of state: the second virial coefficient, B2(T), an effective van der Waals covolume, b(T), and a scaling factor, \u03b1 (T). The second virial coefficients are calculated from a correlation based on the heat of vaporization, \u0394Hvap, and the liquid density at the normal boiling point, \u03c1nb. \u03b1(T) and b(T) can also be calculated from second virial coefficients by a scaling rule. The theory has considerable predictive power, since it permits the construction of the PVT surface from the heat of vaporization and the liquid density at the normal boiling point. The equation of state was tested on 33 liquid mixtures from 12 refrigerants. The results indicate that the liquid densities can be predicted to at most 2.8% over a wide range of temperatures, 170\u2013369 K.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10765-005-5577-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043587", 
            "issn": [
              "0195-928X", 
              "1572-9567"
            ], 
            "name": "International Journal of Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Saturated Liquid Densities for 33 Binary Refrigerant Mixtures Based on the ISM Equation of State", 
        "pagination": "785-794", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d8a2c372346b98744e55e9a2cb22a0f69f3f360e5f534ef26a407d97d701cfa0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10765-005-5577-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045479036"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10765-005-5577-3", 
          "https://app.dimensions.ai/details/publication/pub.1045479036"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118318_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10765-005-5577-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10765-005-5577-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10765-005-5577-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10765-005-5577-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10765-005-5577-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10765-005-5577-3 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N849b6bb386c44907bf2a54fb05d37ba7
    4 schema:citation sg:pub.10.1007/bf00502102
    5 sg:pub.10.1023/a:1021401407904
    6 sg:pub.10.1023/a:1026498021221
    7 https://doi.org/10.1016/s0378-3812(96)03186-x
    8 https://doi.org/10.1016/s0378-3812(98)00395-1
    9 https://doi.org/10.1016/s0378-3812(99)00328-3
    10 https://doi.org/10.1021/ie010897o
    11 https://doi.org/10.1063/1.1649997
    12 https://doi.org/10.1063/1.457252
    13 https://doi.org/10.1063/1.460684
    14 https://doi.org/10.1080/00268979200100681
    15 https://doi.org/10.1143/jpsj.69.1731
    16 schema:datePublished 2005-05
    17 schema:datePublishedReg 2005-05-01
    18 schema:description In this work, the ISM equation of state based on statistical-mechanical perturbation theory has been extended to liquid refrigerant mixtures by using correlations of Boushehri and Mason. Three temperature-dependent parameters are needed to use the equation of state: the second virial coefficient, B2(T), an effective van der Waals covolume, b(T), and a scaling factor, α (T). The second virial coefficients are calculated from a correlation based on the heat of vaporization, ΔHvap, and the liquid density at the normal boiling point, ρnb. α(T) and b(T) can also be calculated from second virial coefficients by a scaling rule. The theory has considerable predictive power, since it permits the construction of the PVT surface from the heat of vaporization and the liquid density at the normal boiling point. The equation of state was tested on 33 liquid mixtures from 12 refrigerants. The results indicate that the liquid densities can be predicted to at most 2.8% over a wide range of temperatures, 170–369 K.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N2586114ca9f54b1888b6a52157a43ebc
    23 Nc93a0c1eaf8b4bfaaed680fb87087a9f
    24 sg:journal.1043587
    25 schema:name Saturated Liquid Densities for 33 Binary Refrigerant Mixtures Based on the ISM Equation of State
    26 schema:pagination 785-794
    27 schema:productId N83746faec2f74694ba5b5a5edb50e184
    28 N994c45b6e2e64ea79dd4110e6c63f6b0
    29 Ne2b97067ec394fe989a724ba1d06c2bf
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479036
    31 https://doi.org/10.1007/s10765-005-5577-3
    32 schema:sdDatePublished 2019-04-11T12:04
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N113fd9fa942849f0a15e67d7a6824acd
    35 schema:url http://link.springer.com/10.1007%2Fs10765-005-5577-3
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N113fd9fa942849f0a15e67d7a6824acd schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N2586114ca9f54b1888b6a52157a43ebc schema:volumeNumber 26
    42 rdf:type schema:PublicationVolume
    43 N2c76f86010a14549840e1e3c84a536c1 rdf:first sg:person.013626026353.85
    44 rdf:rest rdf:nil
    45 N83746faec2f74694ba5b5a5edb50e184 schema:name doi
    46 schema:value 10.1007/s10765-005-5577-3
    47 rdf:type schema:PropertyValue
    48 N849b6bb386c44907bf2a54fb05d37ba7 rdf:first sg:person.016461714035.34
    49 rdf:rest N2c76f86010a14549840e1e3c84a536c1
    50 N994c45b6e2e64ea79dd4110e6c63f6b0 schema:name readcube_id
    51 schema:value d8a2c372346b98744e55e9a2cb22a0f69f3f360e5f534ef26a407d97d701cfa0
    52 rdf:type schema:PropertyValue
    53 Nc93a0c1eaf8b4bfaaed680fb87087a9f schema:issueNumber 3
    54 rdf:type schema:PublicationIssue
    55 Ne2b97067ec394fe989a724ba1d06c2bf schema:name dimensions_id
    56 schema:value pub.1045479036
    57 rdf:type schema:PropertyValue
    58 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Chemical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Physical Chemistry (incl. Structural)
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1043587 schema:issn 0195-928X
    65 1572-9567
    66 schema:name International Journal of Thermophysics
    67 rdf:type schema:Periodical
    68 sg:person.013626026353.85 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
    69 schema:familyName Boushehri
    70 schema:givenName A.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626026353.85
    72 rdf:type schema:Person
    73 sg:person.016461714035.34 schema:affiliation https://www.grid.ac/institutes/grid.412573.6
    74 schema:familyName Sharafi
    75 schema:givenName Z.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461714035.34
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf00502102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001009435
    79 https://doi.org/10.1007/bf00502102
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1023/a:1021401407904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016801664
    82 https://doi.org/10.1023/a:1021401407904
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1023/a:1026498021221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015353054
    85 https://doi.org/10.1023/a:1026498021221
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/s0378-3812(96)03186-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030713053
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/s0378-3812(98)00395-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017739705
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/s0378-3812(99)00328-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034977082
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1021/ie010897o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055595920
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1063/1.1649997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057729957
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1063/1.457252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035264
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1063/1.460684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058038695
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1080/00268979200100681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040726390
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1143/jpsj.69.1731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063118616
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.412573.6 schema:alternateName Shiraz University
    106 schema:name Department of Chemistry, College of Sciences, Shiraz University, 71454, Shiraz, Iran
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...