Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-24

AUTHORS

Y. Avetisyan, A. Makaryan, V. Tadevosyan, M. Tonouchi

ABSTRACT

A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed “beamlets,” which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask’s steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet’s spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources. More... »

PAGES

1439-1447

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10762-017-0429-3

DOI

http://dx.doi.org/10.1007/s10762-017-0429-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091327837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia", 
          "id": "http://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avetisyan", 
        "givenName": "Y.", 
        "id": "sg:person.013215103461.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013215103461.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia", 
          "id": "http://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makaryan", 
        "givenName": "A.", 
        "id": "sg:person.016532672455.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532672455.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia", 
          "id": "http://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tadevosyan", 
        "givenName": "V.", 
        "id": "sg:person.01157721743.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157721743.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, 565-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, 565-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tonouchi", 
        "givenName": "M.", 
        "id": "sg:person.013411144577.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411144577.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10762-015-0165-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028152073", 
          "https://doi.org/10.1007/s10762-015-0165-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10762-012-9918-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033938341", 
          "https://doi.org/10.1007/s10762-012-9918-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031827402", 
          "https://doi.org/10.1038/ncomms9486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-008-2998-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033699993", 
          "https://doi.org/10.1007/s00340-008-2998-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2490-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040286167", 
          "https://doi.org/10.1007/s00340-006-2490-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040590413", 
          "https://doi.org/10.1038/nphoton.2013.184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-24", 
    "datePublishedReg": "2017-08-24", 
    "description": "A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed \u201cbeamlets,\u201d which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask\u2019s steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet\u2019s spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10762-017-0429-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026190", 
        "issn": [
          "1866-6892", 
          "1572-9559"
        ], 
        "name": "Journal of Infrared, Millimeter, and Terahertz Waves", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "THz-pulse generation", 
      "high-energy terahertz pulses", 
      "spatial broadening", 
      "terahertz pulse generation", 
      "phase mask", 
      "nonlinear optical crystal", 
      "single input beam", 
      "lithium niobate crystals", 
      "optical rectification", 
      "terahertz pulses", 
      "laser pulses", 
      "optical crystal", 
      "pulse generation", 
      "pump source", 
      "input beam", 
      "ZnTe crystals", 
      "NLO crystals", 
      "niobate crystals", 
      "entrance surface", 
      "angular dispersion", 
      "grating method", 
      "LN crystals", 
      "mask fabrication", 
      "pulses", 
      "crystals", 
      "ZnTe", 
      "beamlets", 
      "optics", 
      "operation principle", 
      "beam", 
      "mask", 
      "mask steps", 
      "broadening", 
      "promising way", 
      "generation", 
      "source", 
      "dispersion", 
      "fabrication", 
      "new scheme", 
      "rectification", 
      "surface", 
      "scheme", 
      "applications", 
      "method", 
      "principles", 
      "dimensions", 
      "large amount", 
      "step", 
      "contrast", 
      "way", 
      "fact", 
      "introduction", 
      "number", 
      "design", 
      "analysis", 
      "amount", 
      "problem", 
      "necessity", 
      "optimal number", 
      "MSPM", 
      "contact grating method", 
      "tilted-front laser pulse", 
      "long-wavelength pump sources", 
      "high-energy THz-pulse generation", 
      "account individual beamlet\u2019s spatial broadening", 
      "individual beamlet\u2019s spatial broadening", 
      "beamlet\u2019s spatial broadening", 
      "alignment-free THz-pulse sources", 
      "THz-pulse sources", 
      "High-Energy Terahertz Pulse Generation"
    ], 
    "name": "Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification", 
    "pagination": "1439-1447", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091327837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10762-017-0429-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10762-017-0429-3", 
      "https://app.dimensions.ai/details/publication/pub.1091327837"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_746.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10762-017-0429-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10762-017-0429-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10762-017-0429-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10762-017-0429-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10762-017-0429-3'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      102 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10762-017-0429-3 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 anzsrc-for:0299
4 schema:author N12fdeff0f31d4ff58e0c541eecba3334
5 schema:citation sg:pub.10.1007/s00340-006-2490-9
6 sg:pub.10.1007/s00340-008-2998-2
7 sg:pub.10.1007/s10762-012-9918-6
8 sg:pub.10.1007/s10762-015-0165-5
9 sg:pub.10.1038/ncomms9486
10 sg:pub.10.1038/nphoton.2013.184
11 schema:datePublished 2017-08-24
12 schema:datePublishedReg 2017-08-24
13 schema:description A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed “beamlets,” which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask’s steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet’s spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N4bf49df205b8422eb591bbaada78e491
18 Nd7b506c455cb4000bb766bb3f2797f95
19 sg:journal.1026190
20 schema:keywords High-Energy Terahertz Pulse Generation
21 LN crystals
22 MSPM
23 NLO crystals
24 THz-pulse generation
25 THz-pulse sources
26 ZnTe
27 ZnTe crystals
28 account individual beamlet’s spatial broadening
29 alignment-free THz-pulse sources
30 amount
31 analysis
32 angular dispersion
33 applications
34 beam
35 beamlets
36 beamlet’s spatial broadening
37 broadening
38 contact grating method
39 contrast
40 crystals
41 design
42 dimensions
43 dispersion
44 entrance surface
45 fabrication
46 fact
47 generation
48 grating method
49 high-energy THz-pulse generation
50 high-energy terahertz pulses
51 individual beamlet’s spatial broadening
52 input beam
53 introduction
54 large amount
55 laser pulses
56 lithium niobate crystals
57 long-wavelength pump sources
58 mask
59 mask fabrication
60 mask steps
61 method
62 necessity
63 new scheme
64 niobate crystals
65 nonlinear optical crystal
66 number
67 operation principle
68 optical crystal
69 optical rectification
70 optics
71 optimal number
72 phase mask
73 principles
74 problem
75 promising way
76 pulse generation
77 pulses
78 pump source
79 rectification
80 scheme
81 single input beam
82 source
83 spatial broadening
84 step
85 surface
86 terahertz pulse generation
87 terahertz pulses
88 tilted-front laser pulse
89 way
90 schema:name Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification
91 schema:pagination 1439-1447
92 schema:productId N13fac6ae0c8643ba8e003412c57eb20c
93 N214708efb64042f2a7e45f23e01ee914
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091327837
95 https://doi.org/10.1007/s10762-017-0429-3
96 schema:sdDatePublished 2021-11-01T18:30
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N90424d8ff6f2449c89aff95515e87839
99 schema:url https://doi.org/10.1007/s10762-017-0429-3
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N12fdeff0f31d4ff58e0c541eecba3334 rdf:first sg:person.013215103461.22
104 rdf:rest N604aa4405de948e4b8931099ff307af7
105 N13fac6ae0c8643ba8e003412c57eb20c schema:name doi
106 schema:value 10.1007/s10762-017-0429-3
107 rdf:type schema:PropertyValue
108 N214708efb64042f2a7e45f23e01ee914 schema:name dimensions_id
109 schema:value pub.1091327837
110 rdf:type schema:PropertyValue
111 N4bf49df205b8422eb591bbaada78e491 schema:issueNumber 12
112 rdf:type schema:PublicationIssue
113 N604aa4405de948e4b8931099ff307af7 rdf:first sg:person.016532672455.96
114 rdf:rest Nbaebc16b1b824df598023700437692bb
115 N90424d8ff6f2449c89aff95515e87839 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Na84ccb0eb98c4220a0663b308db6e9c0 rdf:first sg:person.013411144577.15
118 rdf:rest rdf:nil
119 Nbaebc16b1b824df598023700437692bb rdf:first sg:person.01157721743.00
120 rdf:rest Na84ccb0eb98c4220a0663b308db6e9c0
121 Nd7b506c455cb4000bb766bb3f2797f95 schema:volumeNumber 38
122 rdf:type schema:PublicationVolume
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
127 schema:name Optical Physics
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
130 schema:name Other Physical Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1026190 schema:issn 1572-9559
133 1866-6892
134 schema:name Journal of Infrared, Millimeter, and Terahertz Waves
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01157721743.00 schema:affiliation grid-institutes:grid.21072.36
138 schema:familyName Tadevosyan
139 schema:givenName V.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157721743.00
141 rdf:type schema:Person
142 sg:person.013215103461.22 schema:affiliation grid-institutes:grid.21072.36
143 schema:familyName Avetisyan
144 schema:givenName Y.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013215103461.22
146 rdf:type schema:Person
147 sg:person.013411144577.15 schema:affiliation grid-institutes:grid.136593.b
148 schema:familyName Tonouchi
149 schema:givenName M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411144577.15
151 rdf:type schema:Person
152 sg:person.016532672455.96 schema:affiliation grid-institutes:grid.21072.36
153 schema:familyName Makaryan
154 schema:givenName A.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532672455.96
156 rdf:type schema:Person
157 sg:pub.10.1007/s00340-006-2490-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040286167
158 https://doi.org/10.1007/s00340-006-2490-9
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00340-008-2998-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033699993
161 https://doi.org/10.1007/s00340-008-2998-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10762-012-9918-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033938341
164 https://doi.org/10.1007/s10762-012-9918-6
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s10762-015-0165-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028152073
167 https://doi.org/10.1007/s10762-015-0165-5
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ncomms9486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031827402
170 https://doi.org/10.1038/ncomms9486
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphoton.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040590413
173 https://doi.org/10.1038/nphoton.2013.184
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.136593.b schema:alternateName Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
176 schema:name Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
177 rdf:type schema:Organization
178 grid-institutes:grid.21072.36 schema:alternateName Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia
179 schema:name Microwave Engineering Department, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...