Wavelet Based Identification of Substances in Terahertz Tomography Measurements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11

AUTHORS

Anika Brahm, Maryna Tymoshchuk, Felix Wichmann, Sebastian Merx, Gunther Notni, Andreas Tünnermann

ABSTRACT

In comparison to the X-ray computed tomography Terahertz technique significantly enhances the amount of the information acquired during the sample measurement. Not only amplitude, but also phase, time and spectral characteristics can be determined in THz time-domain spectroscopy. Thus, Terahertz tomography allows localization and identification of substances within the objects due to the characteristic fingerprints in this frequency range. Certainly, an appropriate data processing and comparison algorithms are crucial for the accurate identification of the substances in the measured sample. Therefore, we present a new wavelet-based identification method which is suitable even for the substances with broad absorption curves and small or no absorption peaks. The performance of this algorithm was evaluated with the help of a tomographic sample filled with four substances, which were previously characterized for the external database. The continuous wavelet transform was applied to every data cell of the tomographic measurement and compared to the database. Received sinograms were reconstructed into images which depict estimated similarity between the measured and database substances. Furthermore, we suggest a method for the reduction of spectral data after the continuous wavelet transform. This method is based on the extraction of the distinctive features in the form of ridge lines. More... »

PAGES

974-986

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10762-014-0106-8

DOI

http://dx.doi.org/10.1007/s10762-014-0106-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027076752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany", 
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brahm", 
        "givenName": "Anika", 
        "id": "sg:person.016031353251.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031353251.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tymoshchuk", 
        "givenName": "Maryna", 
        "id": "sg:person.016441557000.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441557000.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carl Zeiss (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.424549.a", 
          "name": [
            "Carl Zeiss Jena GmbH, Carl Zeiss-Promenade 10, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wichmann", 
        "givenName": "Felix", 
        "id": "sg:person.010343175511.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343175511.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merx", 
        "givenName": "Sebastian", 
        "id": "sg:person.012355317535.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355317535.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Notni", 
        "givenName": "Gunther", 
        "id": "sg:person.01322334365.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322334365.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany", 
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcnnermann", 
        "givenName": "Andreas", 
        "id": "sg:person.0577721111.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.optcom.2010.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003104951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011400650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(08)70016-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011716163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.591472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013584289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019595677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.012982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022674601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-010-3945-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032282926", 
          "https://doi.org/10.1007/s00340-010-3945-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-010-3945-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032282926", 
          "https://doi.org/10.1007/s00340-010-3945-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032833747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45601-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033376807", 
          "https://doi.org/10.1007/978-3-540-45601-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45601-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033376807", 
          "https://doi.org/10.1007/978-3-540-45601-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.749995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040108549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.500491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045011275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2004.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052347652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2012.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052520260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/13.1.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059415348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmtt.2010.2050184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061708789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.11.002549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065182578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icimw.2009.5324635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094865500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/irmmw-thz.2012.6380095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095416214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/irmmw-thz.2013.6665834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095615207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098552248"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "In comparison to the X-ray computed tomography Terahertz technique significantly enhances the amount of the information acquired during the sample measurement. Not only amplitude, but also phase, time and spectral characteristics can be determined in THz time-domain spectroscopy. Thus, Terahertz tomography allows localization and identification of substances within the objects due to the characteristic fingerprints in this frequency range. Certainly, an appropriate data processing and comparison algorithms are crucial for the accurate identification of the substances in the measured sample. Therefore, we present a new wavelet-based identification method which is suitable even for the substances with broad absorption curves and small or no absorption peaks. The performance of this algorithm was evaluated with the help of a tomographic sample filled with four substances, which were previously characterized for the external database. The continuous wavelet transform was applied to every data cell of the tomographic measurement and compared to the database. Received sinograms were reconstructed into images which depict estimated similarity between the measured and database substances. Furthermore, we suggest a method for the reduction of spectral data after the continuous wavelet transform. This method is based on the extraction of the distinctive features in the form of ridge lines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10762-014-0106-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026190", 
        "issn": [
          "1866-6892", 
          "1572-9559"
        ], 
        "name": "Journal of Infrared, Millimeter, and Terahertz Waves", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Wavelet Based Identification of Substances in Terahertz Tomography Measurements", 
    "pagination": "974-986", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80fc4a9a4a2b7f96176aba84602782ab9b416f153aa8d8f06c8126be381fa1ac"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10762-014-0106-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027076752"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10762-014-0106-8", 
      "https://app.dimensions.ai/details/publication/pub.1027076752"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10762-014-0106-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10762-014-0106-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10762-014-0106-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10762-014-0106-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10762-014-0106-8'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10762-014-0106-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3cca73f003af4c0eac596de9032cd70f
4 schema:citation sg:pub.10.1007/978-3-540-45601-8
5 sg:pub.10.1007/s00340-010-3945-6
6 https://doi.org/10.1002/jps.20782
7 https://doi.org/10.1016/j.optcom.2004.02.032
8 https://doi.org/10.1016/j.optcom.2010.01.013
9 https://doi.org/10.1016/j.optlastec.2014.02.011
10 https://doi.org/10.1016/j.trac.2012.11.009
11 https://doi.org/10.1016/s1369-7021(08)70016-6
12 https://doi.org/10.1093/bioinformatics/btl355
13 https://doi.org/10.1093/biomet/13.1.25
14 https://doi.org/10.1109/icimw.2009.5324635
15 https://doi.org/10.1109/irmmw-thz.2012.6380095
16 https://doi.org/10.1109/irmmw-thz.2013.6665834
17 https://doi.org/10.1109/tmtt.2010.2050184
18 https://doi.org/10.1117/12.500491
19 https://doi.org/10.1117/12.591472
20 https://doi.org/10.1117/12.749995
21 https://doi.org/10.1137/1.9781611970104
22 https://doi.org/10.1364/oe.11.002549
23 https://doi.org/10.1364/oe.22.012982
24 https://doi.org/10.1364/ol.27.001312
25 schema:datePublished 2014-11
26 schema:datePublishedReg 2014-11-01
27 schema:description In comparison to the X-ray computed tomography Terahertz technique significantly enhances the amount of the information acquired during the sample measurement. Not only amplitude, but also phase, time and spectral characteristics can be determined in THz time-domain spectroscopy. Thus, Terahertz tomography allows localization and identification of substances within the objects due to the characteristic fingerprints in this frequency range. Certainly, an appropriate data processing and comparison algorithms are crucial for the accurate identification of the substances in the measured sample. Therefore, we present a new wavelet-based identification method which is suitable even for the substances with broad absorption curves and small or no absorption peaks. The performance of this algorithm was evaluated with the help of a tomographic sample filled with four substances, which were previously characterized for the external database. The continuous wavelet transform was applied to every data cell of the tomographic measurement and compared to the database. Received sinograms were reconstructed into images which depict estimated similarity between the measured and database substances. Furthermore, we suggest a method for the reduction of spectral data after the continuous wavelet transform. This method is based on the extraction of the distinctive features in the form of ridge lines.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nc7c0c5d33ca9494a977b3b90759eb821
32 Nea14402d9f37453799c644a09674593c
33 sg:journal.1026190
34 schema:name Wavelet Based Identification of Substances in Terahertz Tomography Measurements
35 schema:pagination 974-986
36 schema:productId N926b400b07b84ca986172a9d0dad217e
37 Nb4f2a84261f84def90688bc0c03f4b5f
38 Ncb3210d7560141e2989d35648776d44c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027076752
40 https://doi.org/10.1007/s10762-014-0106-8
41 schema:sdDatePublished 2019-04-11T00:16
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N6ae59bfc31e44506ae2f93bc88ba6bc8
44 schema:url http://link.springer.com/10.1007%2Fs10762-014-0106-8
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N1538e8a25c2e436b81a55dfc24dde882 rdf:first sg:person.016441557000.88
49 rdf:rest Nadca58a03f2d4f6f931deb3146e1c6c8
50 N1ae91387fbd14baf8fa338997c574eb9 rdf:first sg:person.012355317535.79
51 rdf:rest N6f1dffeed48244f39a4c638b2ec9c9b0
52 N352408e87e4a412faeefd22f7cea4ea4 rdf:first sg:person.0577721111.73
53 rdf:rest rdf:nil
54 N3cca73f003af4c0eac596de9032cd70f rdf:first sg:person.016031353251.90
55 rdf:rest N1538e8a25c2e436b81a55dfc24dde882
56 N6ae59bfc31e44506ae2f93bc88ba6bc8 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N6f1dffeed48244f39a4c638b2ec9c9b0 rdf:first sg:person.01322334365.50
59 rdf:rest N352408e87e4a412faeefd22f7cea4ea4
60 N926b400b07b84ca986172a9d0dad217e schema:name readcube_id
61 schema:value 80fc4a9a4a2b7f96176aba84602782ab9b416f153aa8d8f06c8126be381fa1ac
62 rdf:type schema:PropertyValue
63 Nadca58a03f2d4f6f931deb3146e1c6c8 rdf:first sg:person.010343175511.51
64 rdf:rest N1ae91387fbd14baf8fa338997c574eb9
65 Nb4f2a84261f84def90688bc0c03f4b5f schema:name doi
66 schema:value 10.1007/s10762-014-0106-8
67 rdf:type schema:PropertyValue
68 Nc7c0c5d33ca9494a977b3b90759eb821 schema:issueNumber 11
69 rdf:type schema:PublicationIssue
70 Ncb3210d7560141e2989d35648776d44c schema:name dimensions_id
71 schema:value pub.1027076752
72 rdf:type schema:PropertyValue
73 Nea14402d9f37453799c644a09674593c schema:volumeNumber 35
74 rdf:type schema:PublicationVolume
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1026190 schema:issn 1572-9559
82 1866-6892
83 schema:name Journal of Infrared, Millimeter, and Terahertz Waves
84 rdf:type schema:Periodical
85 sg:person.010343175511.51 schema:affiliation https://www.grid.ac/institutes/grid.424549.a
86 schema:familyName Wichmann
87 schema:givenName Felix
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343175511.51
89 rdf:type schema:Person
90 sg:person.012355317535.79 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
91 schema:familyName Merx
92 schema:givenName Sebastian
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355317535.79
94 rdf:type schema:Person
95 sg:person.01322334365.50 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
96 schema:familyName Notni
97 schema:givenName Gunther
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322334365.50
99 rdf:type schema:Person
100 sg:person.016031353251.90 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
101 schema:familyName Brahm
102 schema:givenName Anika
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031353251.90
104 rdf:type schema:Person
105 sg:person.016441557000.88 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
106 schema:familyName Tymoshchuk
107 schema:givenName Maryna
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441557000.88
109 rdf:type schema:Person
110 sg:person.0577721111.73 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
111 schema:familyName Tünnermann
112 schema:givenName Andreas
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-540-45601-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033376807
116 https://doi.org/10.1007/978-3-540-45601-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00340-010-3945-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032282926
119 https://doi.org/10.1007/s00340-010-3945-6
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/jps.20782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011400650
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.optcom.2004.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052347652
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.optcom.2010.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003104951
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.optlastec.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032833747
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.trac.2012.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052520260
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s1369-7021(08)70016-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011716163
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/bioinformatics/btl355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019595677
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/biomet/13.1.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415348
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/icimw.2009.5324635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094865500
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/irmmw-thz.2012.6380095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095416214
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/irmmw-thz.2013.6665834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095615207
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tmtt.2010.2050184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061708789
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1117/12.500491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045011275
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1117/12.591472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013584289
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1117/12.749995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040108549
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1137/1.9781611970104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098552248
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1364/oe.11.002549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182578
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1364/oe.22.012982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022674601
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/ol.27.001312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220486
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.418007.a schema:alternateName Fraunhofer Institute for Applied Optics and Precision Engineering
160 schema:name Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.424549.a schema:alternateName Carl Zeiss (Germany)
163 schema:name Carl Zeiss Jena GmbH, Carl Zeiss-Promenade 10, 07745, Jena, Germany
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
166 schema:name Fraunhofer Institute for Applied Optics and Precision Engineering, 07745, Jena, Germany
167 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University, 07745, Jena, Germany
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...