Ontology type: schema:ScholarlyArticle
2008-02-29
AUTHORSJ. W. Radder, K. M. Likin, F. S. B. Anderson, D. T. Anderson
ABSTRACTThe HSX oversized, mode-converting ECRH transmission line has been upgraded to a hybrid system to increase launched microwave power and reduce electrical arcing. Filtering of high-order, spurious modes ensures efficient coupling to a Gaussian beam for optimal electron heating. A Vlasov mode converter and two phase-correcting ellipsoidal mirrors convert the TE02 gyrotron output mode to a symmetric, linearly polarized, microwave beam. A swappable twist reflector plate rotates beam polarization for 2nd-harmonic X-mode or fundamental O-mode ECRH. Long distances are traversed by coupling the beam to a dual-mode (TE11 + TM11), smooth, circular cross-section waveguide. This system has been successfully tested without arcing for 50 ms pulses and over 100 kW of launched power. Analysis of the microwave beam for 50 kW, 2 ms microwave pulses reveals agreement with predicted beam shapes at two beam locations. The new system has also demonstrated increased plasma stored energy for ECRH plasmas with equal launched power. More... »
PAGES360-372
http://scigraph.springernature.com/pub.10.1007/s10762-008-9333-1
DOIhttp://dx.doi.org/10.1007/s10762-008-9333-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028053938
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, 53715, Madison, WI, USA",
"id": "http://www.grid.ac/institutes/grid.14003.36",
"name": [
"HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA",
"Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, 53715, Madison, WI, USA"
],
"type": "Organization"
},
"familyName": "Radder",
"givenName": "J. W.",
"id": "sg:person.016151551154.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016151551154.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA",
"id": "http://www.grid.ac/institutes/grid.14003.36",
"name": [
"HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA"
],
"type": "Organization"
},
"familyName": "Likin",
"givenName": "K. M.",
"id": "sg:person.011324271171.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324271171.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA",
"id": "http://www.grid.ac/institutes/grid.14003.36",
"name": [
"HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA"
],
"type": "Organization"
},
"familyName": "Anderson",
"givenName": "F. S. B.",
"id": "sg:person.015651674523.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651674523.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA",
"id": "http://www.grid.ac/institutes/grid.14003.36",
"name": [
"HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA"
],
"type": "Organization"
},
"familyName": "Anderson",
"givenName": "D. T.",
"id": "sg:person.012514322220.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012514322220.95"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01057322",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021002070",
"https://doi.org/10.1007/bf01057322"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-02-29",
"datePublishedReg": "2008-02-29",
"description": "The HSX oversized, mode-converting ECRH transmission line has been upgraded to a hybrid system to increase launched microwave power and reduce electrical arcing. Filtering of high-order, spurious modes ensures efficient coupling to a Gaussian beam for optimal electron heating. A Vlasov mode converter and two phase-correcting ellipsoidal mirrors convert the TE02 gyrotron output mode to a symmetric, linearly polarized, microwave beam. A swappable twist reflector plate rotates beam polarization for 2nd-harmonic X-mode or fundamental O-mode ECRH. Long distances are traversed by coupling the beam to a dual-mode (TE11\u2009+\u2009TM11), smooth, circular cross-section waveguide. This system has been successfully tested without arcing for 50\u00a0ms pulses and over 100\u00a0kW of launched power. Analysis of the microwave beam for 50\u00a0kW, 2\u00a0ms microwave pulses reveals agreement with predicted beam shapes at two beam locations. The new system has also demonstrated increased plasma stored energy for ECRH plasmas with equal launched power.",
"genre": "article",
"id": "sg:pub.10.1007/s10762-008-9333-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026190",
"issn": [
"1866-6892",
"1572-9559"
],
"name": "Journal of Infrared, Millimeter, and Terahertz Waves",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "29"
}
],
"keywords": [
"microwave beam",
"Helically Symmetric Experiment",
"ECRH plasmas",
"electron heating",
"microwave pulses",
"beam polarization",
"ellipsoidal mirror",
"Symmetric Experiment",
"Gaussian beam",
"mode converter",
"beam location",
"efficient coupling",
"output mode",
"beam shape",
"beam",
"microwave power",
"ECRH",
"pulses",
"ms pulses",
"plasma",
"transmission lines",
"long distances",
"mode",
"mirror",
"electrical arcing",
"HSX",
"kW",
"polarization",
"hybrid transmission line",
"coupling",
"energy",
"power",
"spurious modes",
"arcing",
"agreement",
"heating",
"hybrid system",
"distance",
"lines",
"new system",
"shape",
"system",
"experiments",
"converter",
"location",
"analysis"
],
"name": "Hybrid Transmission Line for ECRH in the Helically Symmetric Experiment",
"pagination": "360-372",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028053938"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10762-008-9333-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10762-008-9333-1",
"https://app.dimensions.ai/details/publication/pub.1028053938"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_459.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10762-008-9333-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10762-008-9333-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10762-008-9333-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10762-008-9333-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10762-008-9333-1'
This table displays all metadata directly associated to this object as RDF triples.
131 TRIPLES
22 PREDICATES
72 URIs
63 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10762-008-9333-1 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N298829f707c6410bb301ce4c1f91f29e |
4 | ″ | schema:citation | sg:pub.10.1007/bf01057322 |
5 | ″ | schema:datePublished | 2008-02-29 |
6 | ″ | schema:datePublishedReg | 2008-02-29 |
7 | ″ | schema:description | The HSX oversized, mode-converting ECRH transmission line has been upgraded to a hybrid system to increase launched microwave power and reduce electrical arcing. Filtering of high-order, spurious modes ensures efficient coupling to a Gaussian beam for optimal electron heating. A Vlasov mode converter and two phase-correcting ellipsoidal mirrors convert the TE02 gyrotron output mode to a symmetric, linearly polarized, microwave beam. A swappable twist reflector plate rotates beam polarization for 2nd-harmonic X-mode or fundamental O-mode ECRH. Long distances are traversed by coupling the beam to a dual-mode (TE11 + TM11), smooth, circular cross-section waveguide. This system has been successfully tested without arcing for 50 ms pulses and over 100 kW of launched power. Analysis of the microwave beam for 50 kW, 2 ms microwave pulses reveals agreement with predicted beam shapes at two beam locations. The new system has also demonstrated increased plasma stored energy for ECRH plasmas with equal launched power. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N1dfdf1f0616c4901936436a7ff206c5e |
12 | ″ | ″ | Ne8887836c6bc43e389da57b217b46366 |
13 | ″ | ″ | sg:journal.1026190 |
14 | ″ | schema:keywords | ECRH |
15 | ″ | ″ | ECRH plasmas |
16 | ″ | ″ | Gaussian beam |
17 | ″ | ″ | HSX |
18 | ″ | ″ | Helically Symmetric Experiment |
19 | ″ | ″ | Symmetric Experiment |
20 | ″ | ″ | agreement |
21 | ″ | ″ | analysis |
22 | ″ | ″ | arcing |
23 | ″ | ″ | beam |
24 | ″ | ″ | beam location |
25 | ″ | ″ | beam polarization |
26 | ″ | ″ | beam shape |
27 | ″ | ″ | converter |
28 | ″ | ″ | coupling |
29 | ″ | ″ | distance |
30 | ″ | ″ | efficient coupling |
31 | ″ | ″ | electrical arcing |
32 | ″ | ″ | electron heating |
33 | ″ | ″ | ellipsoidal mirror |
34 | ″ | ″ | energy |
35 | ″ | ″ | experiments |
36 | ″ | ″ | heating |
37 | ″ | ″ | hybrid system |
38 | ″ | ″ | hybrid transmission line |
39 | ″ | ″ | kW |
40 | ″ | ″ | lines |
41 | ″ | ″ | location |
42 | ″ | ″ | long distances |
43 | ″ | ″ | microwave beam |
44 | ″ | ″ | microwave power |
45 | ″ | ″ | microwave pulses |
46 | ″ | ″ | mirror |
47 | ″ | ″ | mode |
48 | ″ | ″ | mode converter |
49 | ″ | ″ | ms pulses |
50 | ″ | ″ | new system |
51 | ″ | ″ | output mode |
52 | ″ | ″ | plasma |
53 | ″ | ″ | polarization |
54 | ″ | ″ | power |
55 | ″ | ″ | pulses |
56 | ″ | ″ | shape |
57 | ″ | ″ | spurious modes |
58 | ″ | ″ | system |
59 | ″ | ″ | transmission lines |
60 | ″ | schema:name | Hybrid Transmission Line for ECRH in the Helically Symmetric Experiment |
61 | ″ | schema:pagination | 360-372 |
62 | ″ | schema:productId | N65a7f5febb9c4305b679073bf6d88f63 |
63 | ″ | ″ | Nd5cb453291b34adda8cafe5802299cb8 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028053938 |
65 | ″ | ″ | https://doi.org/10.1007/s10762-008-9333-1 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | Ne95880336a714042a5f3c0d719bda5e6 |
69 | ″ | schema:url | https://doi.org/10.1007/s10762-008-9333-1 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | articles |
72 | ″ | rdf:type | schema:ScholarlyArticle |
73 | N1dfdf1f0616c4901936436a7ff206c5e | schema:volumeNumber | 29 |
74 | ″ | rdf:type | schema:PublicationVolume |
75 | N298829f707c6410bb301ce4c1f91f29e | rdf:first | sg:person.016151551154.31 |
76 | ″ | rdf:rest | Na6f994f36aeb43eca136ebfaa21bceae |
77 | N42a85239525443afa55f8af1fbd5fb96 | rdf:first | sg:person.012514322220.95 |
78 | ″ | rdf:rest | rdf:nil |
79 | N65a7f5febb9c4305b679073bf6d88f63 | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1028053938 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Na6f994f36aeb43eca136ebfaa21bceae | rdf:first | sg:person.011324271171.39 |
83 | ″ | rdf:rest | Nd4772af09b15496f9c771320a2cb56a4 |
84 | Nd4772af09b15496f9c771320a2cb56a4 | rdf:first | sg:person.015651674523.61 |
85 | ″ | rdf:rest | N42a85239525443afa55f8af1fbd5fb96 |
86 | Nd5cb453291b34adda8cafe5802299cb8 | schema:name | doi |
87 | ″ | schema:value | 10.1007/s10762-008-9333-1 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | Ne8887836c6bc43e389da57b217b46366 | schema:issueNumber | 4 |
90 | ″ | rdf:type | schema:PublicationIssue |
91 | Ne95880336a714042a5f3c0d719bda5e6 | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Physical Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:journal.1026190 | schema:issn | 1572-9559 |
100 | ″ | ″ | 1866-6892 |
101 | ″ | schema:name | Journal of Infrared, Millimeter, and Terahertz Waves |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.011324271171.39 | schema:affiliation | grid-institutes:grid.14003.36 |
105 | ″ | schema:familyName | Likin |
106 | ″ | schema:givenName | K. M. |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324271171.39 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.012514322220.95 | schema:affiliation | grid-institutes:grid.14003.36 |
110 | ″ | schema:familyName | Anderson |
111 | ″ | schema:givenName | D. T. |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012514322220.95 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.015651674523.61 | schema:affiliation | grid-institutes:grid.14003.36 |
115 | ″ | schema:familyName | Anderson |
116 | ″ | schema:givenName | F. S. B. |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651674523.61 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.016151551154.31 | schema:affiliation | grid-institutes:grid.14003.36 |
120 | ″ | schema:familyName | Radder |
121 | ″ | schema:givenName | J. W. |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016151551154.31 |
123 | ″ | rdf:type | schema:Person |
124 | sg:pub.10.1007/bf01057322 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021002070 |
125 | ″ | ″ | https://doi.org/10.1007/bf01057322 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | grid-institutes:grid.14003.36 | schema:alternateName | Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, 53715, Madison, WI, USA |
128 | ″ | ″ | HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA |
129 | ″ | schema:name | Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, 53715, Madison, WI, USA |
130 | ″ | ″ | HSX Plasma Laboratory, University of Wisconsin-Madison, 53706, Madison, WI, USA |
131 | ″ | rdf:type | schema:Organization |