Ontology type: schema:ScholarlyArticle Open Access: True
2021-12-02
AUTHORS ABSTRACTSpin pumping is an interfacial spin current generation from the ferromagnetic layer to the non-magnetic metal at its interface. The polarization of the pumped spin current Js∝m×m˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {J}_s \propto \mathbf {m}\times \dot{\mathbf {m}}$$\end{document} depends on the dynamics of the magnetic moment m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {m}$$\end{document}. When the materials are based on light transition metals, mechanism behind the spin current transfer is dominated by the exchange interaction between spin of localized d-electrons and itinerant conduction electrons. In heavier transition metals, however, the interaction is not limited to the exchange interaction. The spin of the conduction electron can interact to its nuclear spin by means of hyperfine interaction, as observed in the shift of NMR frequency. By studying the spin polarization of conduction electron of the non-magnetic metallic layer due to a nuclear magnetic moment I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{I}$$\end{document} of the ferromagnetic layer, we show that the hyperfine interaction can mediate the spin pumping. The polarization of the spin current generation is shown to have a similar form Js∝I×I˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_s\propto \mathbf {I}\times \dot{\mathbf {I}}$$\end{document}. More... »
PAGES46
http://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0
DOIhttp://dx.doi.org/10.1007/s10751-021-01780-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143570930
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia",
"id": "http://www.grid.ac/institutes/grid.9581.5",
"name": [
"Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia"
],
"type": "Organization"
},
"familyName": "Cahaya",
"givenName": "Adam B.",
"id": "sg:person.012072676355.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072676355.76"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41467-021-24623-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1139724797",
"https://doi.org/10.1038/s41467-021-24623-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-1519-1_33",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010744443",
"https://doi.org/10.1007/978-1-4899-1519-1_33"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-020-66432-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128492025",
"https://doi.org/10.1038/s41598-020-66432-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00528203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022769044",
"https://doi.org/10.1007/bf00528203"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41534-021-00377-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1135649454",
"https://doi.org/10.1038/s41534-021-00377-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41567-018-0310-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107670585",
"https://doi.org/10.1038/s41567-018-0310-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3052-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029367701",
"https://doi.org/10.1007/978-1-4757-3052-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-02",
"datePublishedReg": "2021-12-02",
"description": "Spin pumping is an interfacial spin current generation from the ferromagnetic layer to the non-magnetic metal at its interface. The polarization of the pumped spin current Js\u221dm\u00d7m\u02d9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf {J}_s \\propto \\mathbf {m}\\times \\dot{\\mathbf {m}}$$\\end{document} depends on the dynamics of the magnetic moment m\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf {m}$$\\end{document}. When the materials are based on light transition metals, mechanism behind the spin current transfer is dominated by the exchange interaction between spin of localized d-electrons and itinerant conduction electrons. In heavier transition metals, however, the interaction is not limited to the exchange interaction. The spin of the conduction electron can interact to its nuclear spin by means of hyperfine interaction, as observed in the shift of NMR frequency. By studying the spin polarization of conduction electron of the non-magnetic metallic layer due to a nuclear magnetic moment I\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf{I}$$\\end{document} of the ferromagnetic layer, we show that the hyperfine interaction can mediate the spin pumping. The polarization of the spin current generation is shown to have a similar form Js\u221dI\u00d7I\u02d9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${J}_s\\propto \\mathbf {I}\\times \\dot{\\mathbf {I}}$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s10751-021-01780-0",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1038685",
"issn": [
"0304-3843",
"1572-9540"
],
"name": "Hyperfine Interactions",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "242"
}
],
"keywords": [
"spin current generation",
"conduction electrons",
"hyperfine interaction",
"spin pumping",
"magnetic moment",
"exchange interaction",
"ferromagnetic layers",
"nuclear magnetic moments",
"itinerant conduction electrons",
"non-magnetic metallic layer",
"non-magnetic metals",
"nuclear spins",
"light transition metals",
"spin polarization",
"NMR frequency",
"heavy transition metals",
"d electrons",
"antiferromagnetic spins",
"spin",
"electrons",
"transition metals",
"current generation",
"metallic layer",
"polarization",
"pumping",
"current transfer",
"layer",
"moment",
"interaction",
"metals",
"generation",
"dynamics",
"shift",
"similar form",
"frequency",
"interface",
"transfer",
"materials",
"means",
"mechanism",
"form"
],
"name": "Antiferromagnetic spin pumping via hyperfine interaction",
"pagination": "46",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143570930"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10751-021-01780-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10751-021-01780-0",
"https://app.dimensions.ai/details/publication/pub.1143570930"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_897.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10751-021-01780-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'
This table displays all metadata directly associated to this object as RDF triples.
131 TRIPLES
22 PREDICATES
74 URIs
58 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10751-021-01780-0 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:0204 |
4 | ″ | schema:author | N447b0603f65642a89edfd327419fa10f |
5 | ″ | schema:citation | sg:pub.10.1007/978-1-4757-3052-4 |
6 | ″ | ″ | sg:pub.10.1007/978-1-4899-1519-1_33 |
7 | ″ | ″ | sg:pub.10.1007/bf00528203 |
8 | ″ | ″ | sg:pub.10.1038/s41467-021-24623-6 |
9 | ″ | ″ | sg:pub.10.1038/s41534-021-00377-3 |
10 | ″ | ″ | sg:pub.10.1038/s41567-018-0310-x |
11 | ″ | ″ | sg:pub.10.1038/s41598-020-66432-9 |
12 | ″ | schema:datePublished | 2021-12-02 |
13 | ″ | schema:datePublishedReg | 2021-12-02 |
14 | ″ | schema:description | Spin pumping is an interfacial spin current generation from the ferromagnetic layer to the non-magnetic metal at its interface. The polarization of the pumped spin current Js∝m×m˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {J}_s \propto \mathbf {m}\times \dot{\mathbf {m}}$$\end{document} depends on the dynamics of the magnetic moment m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {m}$$\end{document}. When the materials are based on light transition metals, mechanism behind the spin current transfer is dominated by the exchange interaction between spin of localized d-electrons and itinerant conduction electrons. In heavier transition metals, however, the interaction is not limited to the exchange interaction. The spin of the conduction electron can interact to its nuclear spin by means of hyperfine interaction, as observed in the shift of NMR frequency. By studying the spin polarization of conduction electron of the non-magnetic metallic layer due to a nuclear magnetic moment I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{I}$$\end{document} of the ferromagnetic layer, we show that the hyperfine interaction can mediate the spin pumping. The polarization of the spin current generation is shown to have a similar form Js∝I×I˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_s\propto \mathbf {I}\times \dot{\mathbf {I}}$$\end{document}. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | true |
18 | ″ | schema:isPartOf | N2cd5613086584423933fe69d9c8aa0b5 |
19 | ″ | ″ | N998c0a6a281a460d949657eade86e964 |
20 | ″ | ″ | sg:journal.1038685 |
21 | ″ | schema:keywords | NMR frequency |
22 | ″ | ″ | antiferromagnetic spins |
23 | ″ | ″ | conduction electrons |
24 | ″ | ″ | current generation |
25 | ″ | ″ | current transfer |
26 | ″ | ″ | d electrons |
27 | ″ | ″ | dynamics |
28 | ″ | ″ | electrons |
29 | ″ | ″ | exchange interaction |
30 | ″ | ″ | ferromagnetic layers |
31 | ″ | ″ | form |
32 | ″ | ″ | frequency |
33 | ″ | ″ | generation |
34 | ″ | ″ | heavy transition metals |
35 | ″ | ″ | hyperfine interaction |
36 | ″ | ″ | interaction |
37 | ″ | ″ | interface |
38 | ″ | ″ | itinerant conduction electrons |
39 | ″ | ″ | layer |
40 | ″ | ″ | light transition metals |
41 | ″ | ″ | magnetic moment |
42 | ″ | ″ | materials |
43 | ″ | ″ | means |
44 | ″ | ″ | mechanism |
45 | ″ | ″ | metallic layer |
46 | ″ | ″ | metals |
47 | ″ | ″ | moment |
48 | ″ | ″ | non-magnetic metallic layer |
49 | ″ | ″ | non-magnetic metals |
50 | ″ | ″ | nuclear magnetic moments |
51 | ″ | ″ | nuclear spins |
52 | ″ | ″ | polarization |
53 | ″ | ″ | pumping |
54 | ″ | ″ | shift |
55 | ″ | ″ | similar form |
56 | ″ | ″ | spin |
57 | ″ | ″ | spin current generation |
58 | ″ | ″ | spin polarization |
59 | ″ | ″ | spin pumping |
60 | ″ | ″ | transfer |
61 | ″ | ″ | transition metals |
62 | ″ | schema:name | Antiferromagnetic spin pumping via hyperfine interaction |
63 | ″ | schema:pagination | 46 |
64 | ″ | schema:productId | N61f59d6abdd341e692804f9eb6b59791 |
65 | ″ | ″ | N7bf6d00da9c24e4ea51b9a497549291a |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143570930 |
67 | ″ | ″ | https://doi.org/10.1007/s10751-021-01780-0 |
68 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | Na6d302de4f6545c1ad3a96380f26630c |
71 | ″ | schema:url | https://doi.org/10.1007/s10751-021-01780-0 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | articles |
74 | ″ | rdf:type | schema:ScholarlyArticle |
75 | N2cd5613086584423933fe69d9c8aa0b5 | schema:volumeNumber | 242 |
76 | ″ | rdf:type | schema:PublicationVolume |
77 | N447b0603f65642a89edfd327419fa10f | rdf:first | sg:person.012072676355.76 |
78 | ″ | rdf:rest | rdf:nil |
79 | N61f59d6abdd341e692804f9eb6b59791 | schema:name | doi |
80 | ″ | schema:value | 10.1007/s10751-021-01780-0 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | N7bf6d00da9c24e4ea51b9a497549291a | schema:name | dimensions_id |
83 | ″ | schema:value | pub.1143570930 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N998c0a6a281a460d949657eade86e964 | schema:issueNumber | 1 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | Na6d302de4f6545c1ad3a96380f26630c | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Condensed Matter Physics |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | sg:journal.1038685 | schema:issn | 0304-3843 |
99 | ″ | ″ | 1572-9540 |
100 | ″ | schema:name | Hyperfine Interactions |
101 | ″ | schema:publisher | Springer Nature |
102 | ″ | rdf:type | schema:Periodical |
103 | sg:person.012072676355.76 | schema:affiliation | grid-institutes:grid.9581.5 |
104 | ″ | schema:familyName | Cahaya |
105 | ″ | schema:givenName | Adam B. |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072676355.76 |
107 | ″ | rdf:type | schema:Person |
108 | sg:pub.10.1007/978-1-4757-3052-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029367701 |
109 | ″ | ″ | https://doi.org/10.1007/978-1-4757-3052-4 |
110 | ″ | rdf:type | schema:CreativeWork |
111 | sg:pub.10.1007/978-1-4899-1519-1_33 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010744443 |
112 | ″ | ″ | https://doi.org/10.1007/978-1-4899-1519-1_33 |
113 | ″ | rdf:type | schema:CreativeWork |
114 | sg:pub.10.1007/bf00528203 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022769044 |
115 | ″ | ″ | https://doi.org/10.1007/bf00528203 |
116 | ″ | rdf:type | schema:CreativeWork |
117 | sg:pub.10.1038/s41467-021-24623-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1139724797 |
118 | ″ | ″ | https://doi.org/10.1038/s41467-021-24623-6 |
119 | ″ | rdf:type | schema:CreativeWork |
120 | sg:pub.10.1038/s41534-021-00377-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1135649454 |
121 | ″ | ″ | https://doi.org/10.1038/s41534-021-00377-3 |
122 | ″ | rdf:type | schema:CreativeWork |
123 | sg:pub.10.1038/s41567-018-0310-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1107670585 |
124 | ″ | ″ | https://doi.org/10.1038/s41567-018-0310-x |
125 | ″ | rdf:type | schema:CreativeWork |
126 | sg:pub.10.1038/s41598-020-66432-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128492025 |
127 | ″ | ″ | https://doi.org/10.1038/s41598-020-66432-9 |
128 | ″ | rdf:type | schema:CreativeWork |
129 | grid-institutes:grid.9581.5 | schema:alternateName | Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia |
130 | ″ | schema:name | Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia |
131 | ″ | rdf:type | schema:Organization |