Antiferromagnetic spin pumping via hyperfine interaction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-02

AUTHORS

Adam B. Cahaya

ABSTRACT

Spin pumping is an interfacial spin current generation from the ferromagnetic layer to the non-magnetic metal at its interface. The polarization of the pumped spin current Js∝m×m˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {J}_s \propto \mathbf {m}\times \dot{\mathbf {m}}$$\end{document} depends on the dynamics of the magnetic moment m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {m}$$\end{document}. When the materials are based on light transition metals, mechanism behind the spin current transfer is dominated by the exchange interaction between spin of localized d-electrons and itinerant conduction electrons. In heavier transition metals, however, the interaction is not limited to the exchange interaction. The spin of the conduction electron can interact to its nuclear spin by means of hyperfine interaction, as observed in the shift of NMR frequency. By studying the spin polarization of conduction electron of the non-magnetic metallic layer due to a nuclear magnetic moment I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{I}$$\end{document} of the ferromagnetic layer, we show that the hyperfine interaction can mediate the spin pumping. The polarization of the spin current generation is shown to have a similar form Js∝I×I˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_s\propto \mathbf {I}\times \dot{\mathbf {I}}$$\end{document}. More... »

PAGES

46

References to SciGraph publications

  • 1988-03. Origin and meaning of the Fermi contact interaction in THEORETICAL CHEMISTRY ACCOUNTS
  • 2021-07-16. Observation of nuclear-spin Seebeck effect in NATURE COMMUNICATIONS
  • 2021-02-23. Deep learning enhanced individual nuclear-spin detection in NPJ QUANTUM INFORMATION
  • 1993. Interlayer Exchange Coupling: RKKY Theory and Beyond in MAGNETISM AND STRUCTURE IN SYSTEMS OF REDUCED DIMENSION
  • 2018-10-22. Spin pumping from nuclear spin waves in NATURE PHYSICS
  • 2020-06-16. Detecting quadrupole: a hidden source of magnetic anisotropy for Manganese alloys in SCIENTIFIC REPORTS
  • 1999. New Perspectives in Magnetism of Metals in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0

    DOI

    http://dx.doi.org/10.1007/s10751-021-01780-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143570930


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia", 
              "id": "http://www.grid.ac/institutes/grid.9581.5", 
              "name": [
                "Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cahaya", 
            "givenName": "Adam B.", 
            "id": "sg:person.012072676355.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072676355.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41467-021-24623-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139724797", 
              "https://doi.org/10.1038/s41467-021-24623-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-1519-1_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010744443", 
              "https://doi.org/10.1007/978-1-4899-1519-1_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-66432-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128492025", 
              "https://doi.org/10.1038/s41598-020-66432-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00528203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022769044", 
              "https://doi.org/10.1007/bf00528203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41534-021-00377-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135649454", 
              "https://doi.org/10.1038/s41534-021-00377-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-018-0310-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107670585", 
              "https://doi.org/10.1038/s41567-018-0310-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3052-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029367701", 
              "https://doi.org/10.1007/978-1-4757-3052-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-02", 
        "datePublishedReg": "2021-12-02", 
        "description": "Spin pumping is an interfacial spin current generation from the ferromagnetic layer to the non-magnetic metal at its interface. The polarization of the pumped spin current Js\u221dm\u00d7m\u02d9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf {J}_s \\propto \\mathbf {m}\\times \\dot{\\mathbf {m}}$$\\end{document} depends on the dynamics of the magnetic moment m\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf {m}$$\\end{document}. When the materials are based on light transition metals, mechanism behind the spin current transfer is dominated by the exchange interaction between spin of localized d-electrons and itinerant conduction electrons. In heavier transition metals, however, the interaction is not limited to the exchange interaction. The spin of the conduction electron can interact to its nuclear spin by means of hyperfine interaction, as observed in the shift of NMR frequency. By studying the spin polarization of conduction electron of the non-magnetic metallic layer due to a nuclear magnetic moment I\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbf{I}$$\\end{document} of the ferromagnetic layer, we show that the hyperfine interaction can mediate the spin pumping. The polarization of the spin current generation is shown to have a similar form Js\u221dI\u00d7I\u02d9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${J}_s\\propto \\mathbf {I}\\times \\dot{\\mathbf {I}}$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10751-021-01780-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1038685", 
            "issn": [
              "0304-3843", 
              "1572-9540"
            ], 
            "name": "Hyperfine Interactions", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "242"
          }
        ], 
        "keywords": [
          "spin current generation", 
          "conduction electrons", 
          "hyperfine interaction", 
          "spin pumping", 
          "magnetic moment", 
          "exchange interaction", 
          "ferromagnetic layers", 
          "nuclear magnetic moments", 
          "itinerant conduction electrons", 
          "non-magnetic metallic layer", 
          "non-magnetic metals", 
          "nuclear spins", 
          "light transition metals", 
          "spin polarization", 
          "NMR frequency", 
          "heavy transition metals", 
          "d electrons", 
          "antiferromagnetic spins", 
          "spin", 
          "electrons", 
          "transition metals", 
          "current generation", 
          "metallic layer", 
          "polarization", 
          "pumping", 
          "current transfer", 
          "layer", 
          "moment", 
          "interaction", 
          "metals", 
          "generation", 
          "dynamics", 
          "shift", 
          "similar form", 
          "frequency", 
          "interface", 
          "transfer", 
          "materials", 
          "means", 
          "mechanism", 
          "form"
        ], 
        "name": "Antiferromagnetic spin pumping via hyperfine interaction", 
        "pagination": "46", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143570930"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10751-021-01780-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10751-021-01780-0", 
          "https://app.dimensions.ai/details/publication/pub.1143570930"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_897.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10751-021-01780-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-021-01780-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      22 PREDICATES      74 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10751-021-01780-0 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 anzsrc-for:0204
    4 schema:author N447b0603f65642a89edfd327419fa10f
    5 schema:citation sg:pub.10.1007/978-1-4757-3052-4
    6 sg:pub.10.1007/978-1-4899-1519-1_33
    7 sg:pub.10.1007/bf00528203
    8 sg:pub.10.1038/s41467-021-24623-6
    9 sg:pub.10.1038/s41534-021-00377-3
    10 sg:pub.10.1038/s41567-018-0310-x
    11 sg:pub.10.1038/s41598-020-66432-9
    12 schema:datePublished 2021-12-02
    13 schema:datePublishedReg 2021-12-02
    14 schema:description Spin pumping is an interfacial spin current generation from the ferromagnetic layer to the non-magnetic metal at its interface. The polarization of the pumped spin current Js∝m×m˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {J}_s \propto \mathbf {m}\times \dot{\mathbf {m}}$$\end{document} depends on the dynamics of the magnetic moment m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {m}$$\end{document}. When the materials are based on light transition metals, mechanism behind the spin current transfer is dominated by the exchange interaction between spin of localized d-electrons and itinerant conduction electrons. In heavier transition metals, however, the interaction is not limited to the exchange interaction. The spin of the conduction electron can interact to its nuclear spin by means of hyperfine interaction, as observed in the shift of NMR frequency. By studying the spin polarization of conduction electron of the non-magnetic metallic layer due to a nuclear magnetic moment I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{I}$$\end{document} of the ferromagnetic layer, we show that the hyperfine interaction can mediate the spin pumping. The polarization of the spin current generation is shown to have a similar form Js∝I×I˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_s\propto \mathbf {I}\times \dot{\mathbf {I}}$$\end{document}.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N2cd5613086584423933fe69d9c8aa0b5
    19 N998c0a6a281a460d949657eade86e964
    20 sg:journal.1038685
    21 schema:keywords NMR frequency
    22 antiferromagnetic spins
    23 conduction electrons
    24 current generation
    25 current transfer
    26 d electrons
    27 dynamics
    28 electrons
    29 exchange interaction
    30 ferromagnetic layers
    31 form
    32 frequency
    33 generation
    34 heavy transition metals
    35 hyperfine interaction
    36 interaction
    37 interface
    38 itinerant conduction electrons
    39 layer
    40 light transition metals
    41 magnetic moment
    42 materials
    43 means
    44 mechanism
    45 metallic layer
    46 metals
    47 moment
    48 non-magnetic metallic layer
    49 non-magnetic metals
    50 nuclear magnetic moments
    51 nuclear spins
    52 polarization
    53 pumping
    54 shift
    55 similar form
    56 spin
    57 spin current generation
    58 spin polarization
    59 spin pumping
    60 transfer
    61 transition metals
    62 schema:name Antiferromagnetic spin pumping via hyperfine interaction
    63 schema:pagination 46
    64 schema:productId N61f59d6abdd341e692804f9eb6b59791
    65 N7bf6d00da9c24e4ea51b9a497549291a
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143570930
    67 https://doi.org/10.1007/s10751-021-01780-0
    68 schema:sdDatePublished 2022-05-20T07:39
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Na6d302de4f6545c1ad3a96380f26630c
    71 schema:url https://doi.org/10.1007/s10751-021-01780-0
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N2cd5613086584423933fe69d9c8aa0b5 schema:volumeNumber 242
    76 rdf:type schema:PublicationVolume
    77 N447b0603f65642a89edfd327419fa10f rdf:first sg:person.012072676355.76
    78 rdf:rest rdf:nil
    79 N61f59d6abdd341e692804f9eb6b59791 schema:name doi
    80 schema:value 10.1007/s10751-021-01780-0
    81 rdf:type schema:PropertyValue
    82 N7bf6d00da9c24e4ea51b9a497549291a schema:name dimensions_id
    83 schema:value pub.1143570930
    84 rdf:type schema:PropertyValue
    85 N998c0a6a281a460d949657eade86e964 schema:issueNumber 1
    86 rdf:type schema:PublicationIssue
    87 Na6d302de4f6545c1ad3a96380f26630c schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Physical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Condensed Matter Physics
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1038685 schema:issn 0304-3843
    99 1572-9540
    100 schema:name Hyperfine Interactions
    101 schema:publisher Springer Nature
    102 rdf:type schema:Periodical
    103 sg:person.012072676355.76 schema:affiliation grid-institutes:grid.9581.5
    104 schema:familyName Cahaya
    105 schema:givenName Adam B.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012072676355.76
    107 rdf:type schema:Person
    108 sg:pub.10.1007/978-1-4757-3052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029367701
    109 https://doi.org/10.1007/978-1-4757-3052-4
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-1-4899-1519-1_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010744443
    112 https://doi.org/10.1007/978-1-4899-1519-1_33
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf00528203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022769044
    115 https://doi.org/10.1007/bf00528203
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/s41467-021-24623-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139724797
    118 https://doi.org/10.1038/s41467-021-24623-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/s41534-021-00377-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135649454
    121 https://doi.org/10.1038/s41534-021-00377-3
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/s41567-018-0310-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107670585
    124 https://doi.org/10.1038/s41567-018-0310-x
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/s41598-020-66432-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128492025
    127 https://doi.org/10.1038/s41598-020-66432-9
    128 rdf:type schema:CreativeWork
    129 grid-institutes:grid.9581.5 schema:alternateName Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia
    130 schema:name Department of Physics, Universitas Indonesia, Kampus UI Depok, 16424, Depok, Jawa Barat, Indonesia
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...