Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Maristela Olzon-Dionysio, Danilo Olzon-Dionysio, Marcelo Campos, Willian Takemitsu Shigeyosi, Sylvio Dionysio de Souza, Solange de Souza

ABSTRACT

Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The Mössbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 μm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2–20% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure. More... »

PAGES

26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1

DOI

http://dx.doi.org/10.1007/s10751-019-1563-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112871450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olzon-Dionysio", 
        "givenName": "Maristela", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olzon-Dionysio", 
        "givenName": "Danilo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "School of Sciences and Engineering, S\u00e3o Paulo State University (UNESP), Tup\u00e3, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campos", 
        "givenName": "Marcelo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hunter Educacional, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shigeyosi", 
        "givenName": "Willian Takemitsu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "Sylvio Dionysio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "Solange", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2010.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000370156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00540806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001915239", 
          "https://doi.org/10.1007/bf00540806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2016.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(99)00268-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0142-9612(96)82723-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011197546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10751-011-0351-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015067962", 
          "https://doi.org/10.1007/s10751-011-0351-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(00)00226-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018756144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.19700390113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020685119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2010.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020849491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10751-008-9726-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025110022", 
          "https://doi.org/10.1007/s10751-008-9726-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/1516-1439.285914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025893466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2012.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029161327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2016.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029817667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2009.01.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032343543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1516-14392013005000081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038243923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2008.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039617902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(85)90551-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041148759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(85)90551-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041148759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2006.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043415944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-8388(98)00813-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043565307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:hype.0000020403.64670.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045011888", 
          "https://doi.org/10.1023/b:hype.0000020403.64670.02"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2017.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047065620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2007.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(95)02825-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051291649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(01)00426-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052365965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2005.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052617799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.358561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979598"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The M\u00f6ssbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 \u03bcm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2\u201320% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10751-019-1563-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1038685", 
        "issn": [
          "0304-3843", 
          "1572-9540"
        ], 
        "name": "Hyperfine Interactions", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "240"
      }
    ], 
    "name": "Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times", 
    "pagination": "26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c513364dd01e6bd34ad077ebf2c9428767e6b68a88cf9eaab5da15843cb7aba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10751-019-1563-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112871450"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10751-019-1563-1", 
      "https://app.dimensions.ai/details/publication/pub.1112871450"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10751-019-1563-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10751-019-1563-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N57930790697443a2afab112660fded36
4 schema:citation sg:pub.10.1007/bf00540806
5 sg:pub.10.1007/s10751-008-9726-5
6 sg:pub.10.1007/s10751-011-0351-3
7 sg:pub.10.1023/b:hype.0000020403.64670.02
8 https://doi.org/10.1002/pssb.19700390113
9 https://doi.org/10.1016/0142-9612(96)82723-2
10 https://doi.org/10.1016/0168-583x(85)90551-8
11 https://doi.org/10.1016/0257-8972(95)02825-0
12 https://doi.org/10.1016/j.actamat.2012.04.014
13 https://doi.org/10.1016/j.corsci.2005.06.006
14 https://doi.org/10.1016/j.matchar.2008.08.011
15 https://doi.org/10.1016/j.matchar.2010.06.015
16 https://doi.org/10.1016/j.nimb.2009.01.072
17 https://doi.org/10.1016/j.surfcoat.2006.05.028
18 https://doi.org/10.1016/j.surfcoat.2007.12.040
19 https://doi.org/10.1016/j.surfcoat.2010.04.034
20 https://doi.org/10.1016/j.surfcoat.2016.04.045
21 https://doi.org/10.1016/j.surfcoat.2017.01.037
22 https://doi.org/10.1016/j.vacuum.2016.02.009
23 https://doi.org/10.1016/s0022-0728(99)00268-5
24 https://doi.org/10.1016/s0142-9612(00)00226-x
25 https://doi.org/10.1016/s0304-8853(01)00426-7
26 https://doi.org/10.1016/s0925-8388(98)00813-5
27 https://doi.org/10.1063/1.358561
28 https://doi.org/10.1590/1516-1439.285914
29 https://doi.org/10.1590/s1516-14392013005000081
30 schema:datePublished 2019-06
31 schema:datePublishedReg 2019-06-01
32 schema:description Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The Mössbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 μm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2–20% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N674bdb3457ad48019ede9190dae7f19b
37 Na728e0d2621e48dc956df8fde97dc881
38 sg:journal.1038685
39 schema:name Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times
40 schema:pagination 26
41 schema:productId Naca07756ca4b42058fd89e984c22df20
42 Nbc1e2d52c2844ae19da8de31e60b7072
43 Nd8ada15aa4a545c4be95b4569c76dbfb
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871450
45 https://doi.org/10.1007/s10751-019-1563-1
46 schema:sdDatePublished 2019-04-11T12:23
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nf1b59b64d1a546ee97e421e375f9010b
49 schema:url https://link.springer.com/10.1007%2Fs10751-019-1563-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N41964a47e70c424bb4fe9c7b3d936685 rdf:first Na824627493454c7695a32be4aa64ffee
54 rdf:rest Nb0057de9b3244e54a42102dc5523f2d3
55 N4a78caa2ae8045b6a87ed4dd1b9c21d0 rdf:first N98973c1ecebb458593b39a5ef793bb55
56 rdf:rest N41964a47e70c424bb4fe9c7b3d936685
57 N57930790697443a2afab112660fded36 rdf:first N77ec12a304c34f54a3bdfdb74380e699
58 rdf:rest N4a78caa2ae8045b6a87ed4dd1b9c21d0
59 N674bdb3457ad48019ede9190dae7f19b schema:volumeNumber 240
60 rdf:type schema:PublicationVolume
61 N77ec12a304c34f54a3bdfdb74380e699 schema:affiliation https://www.grid.ac/institutes/grid.411287.9
62 schema:familyName Olzon-Dionysio
63 schema:givenName Maristela
64 rdf:type schema:Person
65 N98973c1ecebb458593b39a5ef793bb55 schema:affiliation https://www.grid.ac/institutes/grid.411287.9
66 schema:familyName Olzon-Dionysio
67 schema:givenName Danilo
68 rdf:type schema:Person
69 N99d8eb3c2c8f42d887ad02d6d7d76d69 schema:affiliation https://www.grid.ac/institutes/grid.411287.9
70 schema:familyName de Souza
71 schema:givenName Solange
72 rdf:type schema:Person
73 Na63eee38a60c4d1f9580df42308e9cab schema:affiliation https://www.grid.ac/institutes/grid.411287.9
74 schema:familyName de Souza
75 schema:givenName Sylvio Dionysio
76 rdf:type schema:Person
77 Na728e0d2621e48dc956df8fde97dc881 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Na824627493454c7695a32be4aa64ffee schema:affiliation https://www.grid.ac/institutes/grid.410543.7
80 schema:familyName Campos
81 schema:givenName Marcelo
82 rdf:type schema:Person
83 Naca07756ca4b42058fd89e984c22df20 schema:name dimensions_id
84 schema:value pub.1112871450
85 rdf:type schema:PropertyValue
86 Nb0057de9b3244e54a42102dc5523f2d3 rdf:first Nf28df1495a9f484bba02bbc59ae1b172
87 rdf:rest Nd0207549dd9646c3830ac695bc2f837d
88 Nb4a3b1ed1d8f4215892d681fef2c73fb rdf:first N99d8eb3c2c8f42d887ad02d6d7d76d69
89 rdf:rest rdf:nil
90 Nbc1e2d52c2844ae19da8de31e60b7072 schema:name doi
91 schema:value 10.1007/s10751-019-1563-1
92 rdf:type schema:PropertyValue
93 Nd0207549dd9646c3830ac695bc2f837d rdf:first Na63eee38a60c4d1f9580df42308e9cab
94 rdf:rest Nb4a3b1ed1d8f4215892d681fef2c73fb
95 Nd8ada15aa4a545c4be95b4569c76dbfb schema:name readcube_id
96 schema:value 0c513364dd01e6bd34ad077ebf2c9428767e6b68a88cf9eaab5da15843cb7aba
97 rdf:type schema:PropertyValue
98 Nf1b59b64d1a546ee97e421e375f9010b schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nf28df1495a9f484bba02bbc59ae1b172 schema:affiliation Nf43bc03ec0ec4335b2944b5aae02f13b
101 schema:familyName Shigeyosi
102 schema:givenName Willian Takemitsu
103 rdf:type schema:Person
104 Nf43bc03ec0ec4335b2944b5aae02f13b schema:name Hunter Educacional, Campinas, SP, Brazil
105 rdf:type schema:Organization
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
110 schema:name Materials Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1038685 schema:issn 0304-3843
113 1572-9540
114 schema:name Hyperfine Interactions
115 rdf:type schema:Periodical
116 sg:pub.10.1007/bf00540806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001915239
117 https://doi.org/10.1007/bf00540806
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10751-008-9726-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025110022
120 https://doi.org/10.1007/s10751-008-9726-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10751-011-0351-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015067962
123 https://doi.org/10.1007/s10751-011-0351-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/b:hype.0000020403.64670.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045011888
126 https://doi.org/10.1023/b:hype.0000020403.64670.02
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/pssb.19700390113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020685119
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0142-9612(96)82723-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011197546
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0168-583x(85)90551-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148759
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0257-8972(95)02825-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051291649
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.actamat.2012.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029161327
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.corsci.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052617799
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.matchar.2008.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039617902
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.matchar.2010.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020849491
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.nimb.2009.01.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032343543
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.surfcoat.2006.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043415944
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.surfcoat.2007.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967106
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.surfcoat.2010.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000370156
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.surfcoat.2016.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029817667
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.surfcoat.2017.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047065620
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.vacuum.2016.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482102
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0022-0728(99)00268-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029371
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0142-9612(00)00226-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018756144
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0304-8853(01)00426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052365965
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0925-8388(98)00813-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043565307
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.358561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979598
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1590/1516-1439.285914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025893466
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1590/s1516-14392013005000081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038243923
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
173 schema:name School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, SP, Brazil
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.411287.9 schema:alternateName Universidade Federal dos Vales do Jequitinhonha e Mucuri
176 schema:name Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...