Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Maristela Olzon-Dionysio, Danilo Olzon-Dionysio, Marcelo Campos, Willian Takemitsu Shigeyosi, Sylvio Dionysio de Souza, Solange de Souza

ABSTRACT

Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The Mössbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 μm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2–20% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure. More... »

PAGES

26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1

DOI

http://dx.doi.org/10.1007/s10751-019-1563-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112871450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olzon-Dionysio", 
        "givenName": "Maristela", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olzon-Dionysio", 
        "givenName": "Danilo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "School of Sciences and Engineering, S\u00e3o Paulo State University (UNESP), Tup\u00e3, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campos", 
        "givenName": "Marcelo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hunter Educacional, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shigeyosi", 
        "givenName": "Willian Takemitsu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "Sylvio Dionysio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal dos Vales do Jequitinhonha e Mucuri", 
          "id": "https://www.grid.ac/institutes/grid.411287.9", 
          "name": [
            "Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "Solange", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2010.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000370156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00540806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001915239", 
          "https://doi.org/10.1007/bf00540806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2016.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(99)00268-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0142-9612(96)82723-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011197546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10751-011-0351-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015067962", 
          "https://doi.org/10.1007/s10751-011-0351-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(00)00226-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018756144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.19700390113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020685119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2010.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020849491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10751-008-9726-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025110022", 
          "https://doi.org/10.1007/s10751-008-9726-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/1516-1439.285914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025893466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2012.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029161327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2016.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029817667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2009.01.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032343543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1516-14392013005000081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038243923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2008.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039617902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(85)90551-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041148759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(85)90551-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041148759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2006.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043415944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-8388(98)00813-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043565307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:hype.0000020403.64670.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045011888", 
          "https://doi.org/10.1023/b:hype.0000020403.64670.02"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2017.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047065620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2007.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(95)02825-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051291649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(01)00426-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052365965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2005.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052617799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.358561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979598"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The M\u00f6ssbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 \u03bcm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2\u201320% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10751-019-1563-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1038685", 
        "issn": [
          "0304-3843", 
          "1572-9540"
        ], 
        "name": "Hyperfine Interactions", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "240"
      }
    ], 
    "name": "Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times", 
    "pagination": "26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c513364dd01e6bd34ad077ebf2c9428767e6b68a88cf9eaab5da15843cb7aba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10751-019-1563-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112871450"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10751-019-1563-1", 
      "https://app.dimensions.ai/details/publication/pub.1112871450"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10751-019-1563-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-019-1563-1'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10751-019-1563-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Neb77ddf69b964dfaa800679908cd36aa
4 schema:citation sg:pub.10.1007/bf00540806
5 sg:pub.10.1007/s10751-008-9726-5
6 sg:pub.10.1007/s10751-011-0351-3
7 sg:pub.10.1023/b:hype.0000020403.64670.02
8 https://doi.org/10.1002/pssb.19700390113
9 https://doi.org/10.1016/0142-9612(96)82723-2
10 https://doi.org/10.1016/0168-583x(85)90551-8
11 https://doi.org/10.1016/0257-8972(95)02825-0
12 https://doi.org/10.1016/j.actamat.2012.04.014
13 https://doi.org/10.1016/j.corsci.2005.06.006
14 https://doi.org/10.1016/j.matchar.2008.08.011
15 https://doi.org/10.1016/j.matchar.2010.06.015
16 https://doi.org/10.1016/j.nimb.2009.01.072
17 https://doi.org/10.1016/j.surfcoat.2006.05.028
18 https://doi.org/10.1016/j.surfcoat.2007.12.040
19 https://doi.org/10.1016/j.surfcoat.2010.04.034
20 https://doi.org/10.1016/j.surfcoat.2016.04.045
21 https://doi.org/10.1016/j.surfcoat.2017.01.037
22 https://doi.org/10.1016/j.vacuum.2016.02.009
23 https://doi.org/10.1016/s0022-0728(99)00268-5
24 https://doi.org/10.1016/s0142-9612(00)00226-x
25 https://doi.org/10.1016/s0304-8853(01)00426-7
26 https://doi.org/10.1016/s0925-8388(98)00813-5
27 https://doi.org/10.1063/1.358561
28 https://doi.org/10.1590/1516-1439.285914
29 https://doi.org/10.1590/s1516-14392013005000081
30 schema:datePublished 2019-06
31 schema:datePublishedReg 2019-06-01
32 schema:description Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The Mössbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 μm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2–20% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N5c9626d3ebd74579bb14294d6de1eff7
37 Nd324cca156614e0a9d433543d58f26de
38 sg:journal.1038685
39 schema:name Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times
40 schema:pagination 26
41 schema:productId N421d12e7efb54122b2e84b80f51b5abf
42 N7f6cf7069f284cb49f870f0bb5fd56a1
43 Nc3feff4e0c254bfbabb3df8e5946f37d
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871450
45 https://doi.org/10.1007/s10751-019-1563-1
46 schema:sdDatePublished 2019-04-11T12:23
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nd3fedb37d68849338207fcf0b583e99e
49 schema:url https://link.springer.com/10.1007%2Fs10751-019-1563-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N2b8b28ecd46e42e395a672699ddbdf6d schema:affiliation https://www.grid.ac/institutes/grid.410543.7
54 schema:familyName Campos
55 schema:givenName Marcelo
56 rdf:type schema:Person
57 N2e4318aff47f407a8ee1bc78ac55a11f rdf:first N2b8b28ecd46e42e395a672699ddbdf6d
58 rdf:rest Nb61bb97f1b504ec79817f285f84722f4
59 N421d12e7efb54122b2e84b80f51b5abf schema:name doi
60 schema:value 10.1007/s10751-019-1563-1
61 rdf:type schema:PropertyValue
62 N4929fc066bb748c3b4042897105e504a schema:affiliation https://www.grid.ac/institutes/grid.411287.9
63 schema:familyName de Souza
64 schema:givenName Solange
65 rdf:type schema:Person
66 N4cb6bdcbba55451d97d479f8f8414882 schema:affiliation https://www.grid.ac/institutes/grid.411287.9
67 schema:familyName Olzon-Dionysio
68 schema:givenName Maristela
69 rdf:type schema:Person
70 N5c9626d3ebd74579bb14294d6de1eff7 schema:volumeNumber 240
71 rdf:type schema:PublicationVolume
72 N7f6cf7069f284cb49f870f0bb5fd56a1 schema:name readcube_id
73 schema:value 0c513364dd01e6bd34ad077ebf2c9428767e6b68a88cf9eaab5da15843cb7aba
74 rdf:type schema:PropertyValue
75 N8926708abf27443082c28c7812f7130f schema:name Hunter Educacional, Campinas, SP, Brazil
76 rdf:type schema:Organization
77 Na12cf511f2c341fa928a8a1ea1d9edee rdf:first Nf157b779df8d49909c3d29e5444b3e36
78 rdf:rest Ncfe15991d68f4b189e657d5284f90ce3
79 Nabc1a351557647a298fbd28bfc72004a schema:affiliation https://www.grid.ac/institutes/grid.411287.9
80 schema:familyName Olzon-Dionysio
81 schema:givenName Danilo
82 rdf:type schema:Person
83 Nb61bb97f1b504ec79817f285f84722f4 rdf:first Ne853a82e82884063aac5540347a5f678
84 rdf:rest Na12cf511f2c341fa928a8a1ea1d9edee
85 Nc3feff4e0c254bfbabb3df8e5946f37d schema:name dimensions_id
86 schema:value pub.1112871450
87 rdf:type schema:PropertyValue
88 Ncfe15991d68f4b189e657d5284f90ce3 rdf:first N4929fc066bb748c3b4042897105e504a
89 rdf:rest rdf:nil
90 Nd324cca156614e0a9d433543d58f26de schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Nd3fedb37d68849338207fcf0b583e99e schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ne853a82e82884063aac5540347a5f678 schema:affiliation N8926708abf27443082c28c7812f7130f
95 schema:familyName Shigeyosi
96 schema:givenName Willian Takemitsu
97 rdf:type schema:Person
98 Neb77ddf69b964dfaa800679908cd36aa rdf:first N4cb6bdcbba55451d97d479f8f8414882
99 rdf:rest Nfebb4cbf71b04be28e80f506bd7dcb47
100 Nf157b779df8d49909c3d29e5444b3e36 schema:affiliation https://www.grid.ac/institutes/grid.411287.9
101 schema:familyName de Souza
102 schema:givenName Sylvio Dionysio
103 rdf:type schema:Person
104 Nfebb4cbf71b04be28e80f506bd7dcb47 rdf:first Nabc1a351557647a298fbd28bfc72004a
105 rdf:rest N2e4318aff47f407a8ee1bc78ac55a11f
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
110 schema:name Materials Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1038685 schema:issn 0304-3843
113 1572-9540
114 schema:name Hyperfine Interactions
115 rdf:type schema:Periodical
116 sg:pub.10.1007/bf00540806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001915239
117 https://doi.org/10.1007/bf00540806
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10751-008-9726-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025110022
120 https://doi.org/10.1007/s10751-008-9726-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10751-011-0351-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015067962
123 https://doi.org/10.1007/s10751-011-0351-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/b:hype.0000020403.64670.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045011888
126 https://doi.org/10.1023/b:hype.0000020403.64670.02
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/pssb.19700390113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020685119
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0142-9612(96)82723-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011197546
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0168-583x(85)90551-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148759
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0257-8972(95)02825-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051291649
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.actamat.2012.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029161327
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.corsci.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052617799
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.matchar.2008.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039617902
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.matchar.2010.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020849491
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.nimb.2009.01.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032343543
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.surfcoat.2006.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043415944
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.surfcoat.2007.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967106
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.surfcoat.2010.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000370156
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.surfcoat.2016.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029817667
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.surfcoat.2017.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047065620
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.vacuum.2016.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482102
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0022-0728(99)00268-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029371
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0142-9612(00)00226-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018756144
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0304-8853(01)00426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052365965
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0925-8388(98)00813-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043565307
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.358561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979598
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1590/1516-1439.285914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025893466
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1590/s1516-14392013005000081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038243923
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
173 schema:name School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, SP, Brazil
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.411287.9 schema:alternateName Universidade Federal dos Vales do Jequitinhonha e Mucuri
176 schema:name Science and Technology Institute, Federal University of the Valleys of Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...