Beyond antihydrogen: testing CPT with the molecular antihydrogen ion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-24

AUTHORS

Edmund G. Myers

ABSTRACT

Measurements of Zeeman, Zeeman-hyperfine and ro-vibrational transitions in H̄2−(p̄e+p̄)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_{2}^{-}(\bar {p}e^{+}\bar {p})$\end{document} compared to H2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{2}^{+}$\end{document} have the potential for more precise tests of CPT than can be obtained from antiprotons and antihydrogen. In particular, measurements of ro-vibrational transitions have a potential sensitivity to a difference between antiproton and proton mass three orders of magnitude higher than antihydrogen/hydrogen. Methods are outlined for precision measurements on a single H̄2−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_{2}^{-}$\end{document} or H2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${H}_{2}^{+}$\end{document} ion in a cryogenic Penning trap, with non-destructive state identification using the continuous Stern-Gerlach effect or changes in mass. H̄2−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_{2}^{-}$\end{document} can be produced using the H̄++p̄→H̄2−+e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}^{+}+\bar {p} \rightarrow \bar {H}_{2}^{-} + e^{+}$\end{document} reaction. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10751-018-1520-4

DOI

http://dx.doi.org/10.1007/s10751-018-1520-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107822406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, Florida State University, 32306, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Physics Department, Florida State University, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myers", 
        "givenName": "Edmund G.", 
        "id": "sg:person.010646130662.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010646130662.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature22338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085381713", 
          "https://doi.org/10.1038/nature22338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092261948", 
          "https://doi.org/10.1038/nature24048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047457104", 
          "https://doi.org/10.1038/nature14861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021107015", 
          "https://doi.org/10.1038/nature09610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-016-6589-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021931049", 
          "https://doi.org/10.1007/s00340-016-6589-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10751-015-1154-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029689396", 
          "https://doi.org/10.1007/s10751-015-1154-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043615604", 
          "https://doi.org/10.1038/nature13026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090947385", 
          "https://doi.org/10.1038/nature23446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862114", 
          "https://doi.org/10.1038/s41586-018-0017-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085985390", 
          "https://doi.org/10.1038/ncomms15749"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-24", 
    "datePublishedReg": "2018-10-24", 
    "description": "Measurements of Zeeman, Zeeman-hyperfine and ro-vibrational transitions in H\u03042\u2212(p\u0304e+p\u0304)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\bar {H}_{2}^{-}(\\bar {p}e^{+}\\bar {p})$\\end{document} compared to H2+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$H_{2}^{+}$\\end{document} have the potential for more precise tests of CPT than can be obtained from antiprotons and antihydrogen. In particular, measurements of ro-vibrational transitions have a potential sensitivity to a difference between antiproton and proton mass three orders of magnitude higher than antihydrogen/hydrogen. Methods are outlined for precision measurements on a single H\u03042\u2212\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\bar {H}_{2}^{-}$\\end{document} or H2+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${H}_{2}^{+}$\\end{document} ion in a cryogenic Penning trap, with non-destructive state identification using the continuous Stern-Gerlach effect or changes in mass. H\u03042\u2212\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\bar {H}_{2}^{-}$\\end{document} can be produced using the H\u0304++p\u0304\u2192H\u03042\u2212+e+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\bar {H}^{+}+\\bar {p} \\rightarrow \\bar {H}_{2}^{-} + e^{+}$\\end{document} reaction.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10751-018-1520-4", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3848434", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038685", 
        "issn": [
          "0304-3843", 
          "1572-9540"
        ], 
        "name": "Hyperfine Interactions", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "239"
      }
    ], 
    "keywords": [
      "ro-vibrational transitions", 
      "continuous Stern-Gerlach effect", 
      "cryogenic Penning trap", 
      "Stern-Gerlach effect", 
      "Measurements of Zeeman", 
      "Penning trap", 
      "antihydrogen ion", 
      "precision measurements", 
      "precise test", 
      "antiprotons", 
      "antihydrogen", 
      "three orders", 
      "potential sensitivity", 
      "ions", 
      "measurements", 
      "Zeeman", 
      "transition", 
      "traps", 
      "hydrogen", 
      "CPT", 
      "mass", 
      "magnitude", 
      "state identification", 
      "sensitivity", 
      "potential", 
      "order", 
      "reaction", 
      "method", 
      "effect", 
      "changes", 
      "differences", 
      "identification", 
      "test"
    ], 
    "name": "Beyond antihydrogen: testing CPT with the molecular antihydrogen ion", 
    "pagination": "43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107822406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10751-018-1520-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10751-018-1520-4", 
      "https://app.dimensions.ai/details/publication/pub.1107822406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_784.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10751-018-1520-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-018-1520-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-018-1520-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-018-1520-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-018-1520-4'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      67 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10751-018-1520-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N01ce35017bdf44fcb0640f2bf8c57cd5
4 schema:citation sg:pub.10.1007/s00340-016-6589-3
5 sg:pub.10.1007/s10751-015-1154-8
6 sg:pub.10.1038/nature09610
7 sg:pub.10.1038/nature13026
8 sg:pub.10.1038/nature14861
9 sg:pub.10.1038/nature22338
10 sg:pub.10.1038/nature23446
11 sg:pub.10.1038/nature24048
12 sg:pub.10.1038/ncomms15749
13 sg:pub.10.1038/s41586-018-0017-2
14 schema:datePublished 2018-10-24
15 schema:datePublishedReg 2018-10-24
16 schema:description Measurements of Zeeman, Zeeman-hyperfine and ro-vibrational transitions in H̄2−(p̄e+p̄)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_{2}^{-}(\bar {p}e^{+}\bar {p})$\end{document} compared to H2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{2}^{+}$\end{document} have the potential for more precise tests of CPT than can be obtained from antiprotons and antihydrogen. In particular, measurements of ro-vibrational transitions have a potential sensitivity to a difference between antiproton and proton mass three orders of magnitude higher than antihydrogen/hydrogen. Methods are outlined for precision measurements on a single H̄2−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_{2}^{-}$\end{document} or H2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${H}_{2}^{+}$\end{document} ion in a cryogenic Penning trap, with non-destructive state identification using the continuous Stern-Gerlach effect or changes in mass. H̄2−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}_{2}^{-}$\end{document} can be produced using the H̄++p̄→H̄2−+e+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {H}^{+}+\bar {p} \rightarrow \bar {H}_{2}^{-} + e^{+}$\end{document} reaction.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N18ce28c7baac4387978d0ba1c5452fa9
20 N41bcde84482e46afae2e9766559a5feb
21 sg:journal.1038685
22 schema:keywords CPT
23 Measurements of Zeeman
24 Penning trap
25 Stern-Gerlach effect
26 Zeeman
27 antihydrogen
28 antihydrogen ion
29 antiprotons
30 changes
31 continuous Stern-Gerlach effect
32 cryogenic Penning trap
33 differences
34 effect
35 hydrogen
36 identification
37 ions
38 magnitude
39 mass
40 measurements
41 method
42 order
43 potential
44 potential sensitivity
45 precise test
46 precision measurements
47 reaction
48 ro-vibrational transitions
49 sensitivity
50 state identification
51 test
52 three orders
53 transition
54 traps
55 schema:name Beyond antihydrogen: testing CPT with the molecular antihydrogen ion
56 schema:pagination 43
57 schema:productId N5645a3dea4ce4f48b2e69653ef80d7ac
58 Ne33b1c6f0a194a4fad3c662fbb901b4a
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107822406
60 https://doi.org/10.1007/s10751-018-1520-4
61 schema:sdDatePublished 2022-11-24T21:03
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne239de1ca49a4663a4a3b755da412222
64 schema:url https://doi.org/10.1007/s10751-018-1520-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N01ce35017bdf44fcb0640f2bf8c57cd5 rdf:first sg:person.010646130662.65
69 rdf:rest rdf:nil
70 N18ce28c7baac4387978d0ba1c5452fa9 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N41bcde84482e46afae2e9766559a5feb schema:volumeNumber 239
73 rdf:type schema:PublicationVolume
74 N5645a3dea4ce4f48b2e69653ef80d7ac schema:name dimensions_id
75 schema:value pub.1107822406
76 rdf:type schema:PropertyValue
77 Ne239de1ca49a4663a4a3b755da412222 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ne33b1c6f0a194a4fad3c662fbb901b4a schema:name doi
80 schema:value 10.1007/s10751-018-1520-4
81 rdf:type schema:PropertyValue
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
86 schema:name Other Physical Sciences
87 rdf:type schema:DefinedTerm
88 sg:grant.3848434 http://pending.schema.org/fundedItem sg:pub.10.1007/s10751-018-1520-4
89 rdf:type schema:MonetaryGrant
90 sg:journal.1038685 schema:issn 0304-3843
91 1572-9540
92 schema:name Hyperfine Interactions
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.010646130662.65 schema:affiliation grid-institutes:grid.255986.5
96 schema:familyName Myers
97 schema:givenName Edmund G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010646130662.65
99 rdf:type schema:Person
100 sg:pub.10.1007/s00340-016-6589-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021931049
101 https://doi.org/10.1007/s00340-016-6589-3
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10751-015-1154-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029689396
104 https://doi.org/10.1007/s10751-015-1154-8
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nature09610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021107015
107 https://doi.org/10.1038/nature09610
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nature13026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043615604
110 https://doi.org/10.1038/nature13026
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nature14861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047457104
113 https://doi.org/10.1038/nature14861
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nature22338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085381713
116 https://doi.org/10.1038/nature22338
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature23446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090947385
119 https://doi.org/10.1038/nature23446
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature24048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261948
122 https://doi.org/10.1038/nature24048
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/ncomms15749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085985390
125 https://doi.org/10.1038/ncomms15749
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/s41586-018-0017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101862114
128 https://doi.org/10.1038/s41586-018-0017-2
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.255986.5 schema:alternateName Physics Department, Florida State University, 32306, Tallahassee, FL, USA
131 schema:name Physics Department, Florida State University, 32306, Tallahassee, FL, USA
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...