Mechanosynthesis of bcc alloys from Fe50−y/2Co50−y/2Sny mixtures (2 ≤ y ≤ 33) and B2 ordering by annealing at modest temperatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

B. F. O. Costa, B. Malaman, G. Le Caër, P. M. Gordo, A. Ramalho

ABSTRACT

Elemental powder mixtures of Fe, Co and Sn of initial compositions Fe50−y/2Co50−y/2Sny(2 ≤y ≤ 26) are ball-milled at high-energy. They yield metastable alloys which are predominantly composed of a supersaturated bcc Fe-Co-Sn phase. The amount of tin dissolved in it is at least ˜15 at.% in the dynamical conditions of milling which were selected. A recently discovered stannide, CoSn5, passed hitherto unobserved in Co–Sn binary phase diagrams. It forms at Co-Sn interfaces at very short milling times, 0.5h, thanks to the high-diffusivity of cobalt in tin. Finally, neutron diffraction and 119Sn Mössbauer spectroscopy show that metastable B2 ordering develops in as-milled alloys, for y ≤ 26, when they are further annealed at modest temperature, here for 15h at 675K. The tendency to long-range order in ternary Fe-Co-Sn bcc alloys is thus observed in metastable alloys. More... »

PAGES

76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10751-017-1453-3

DOI

http://dx.doi.org/10.1007/s10751-017-1453-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092292066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Coimbra", 
          "id": "https://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CFisUC, Physics Department, University of Coimbra, 3004-516, Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costa", 
        "givenName": "B. F. O.", 
        "id": "sg:person.015210137612.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210137612.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Jean Lamour", 
          "id": "https://www.grid.ac/institutes/grid.461892.0", 
          "name": [
            "Institut Jean Lamour, D\u00e9partement P2M, Equipe 103, CNRS (UMR 7198)- Universit\u00e9 de Nancy, B.P. 70239, 54506, Vandoeuvre-les-Nancy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malaman", 
        "givenName": "B.", 
        "id": "sg:person.07546673773.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546673773.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.461893.1", 
          "name": [
            "Institut de Physique de Rennes, UMR URI-CNRS 6251, Universit\u00e9 de Rennes I, Campus de Beaulieu, Bat 11A, 35042, Rennes Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ca\u00ebr", 
        "givenName": "G. Le", 
        "id": "sg:person.012734720237.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734720237.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Coimbra", 
          "id": "https://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CFisUC, Physics Department, University of Coimbra, 3004-516, Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordo", 
        "givenName": "P. M.", 
        "id": "sg:person.013705407651.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705407651.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Coimbra", 
          "id": "https://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CEMUC, Department of Mechanical Engineering, University of Coimbra, 3000-272, Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramalho", 
        "givenName": "A.", 
        "id": "sg:person.0611234136.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611234136.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c4ta06960a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002677321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004729579", 
          "https://doi.org/10.1007/bf02647712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004729579", 
          "https://doi.org/10.1007/bf02647712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2015.08.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007403684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.12.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007761678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a804645j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009228572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(67)90058-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013904885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(67)90058-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013904885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(85)90012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019351067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(85)90012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019351067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1493855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-016-9879-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032802798", 
          "https://doi.org/10.1007/s10853-016-9879-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6425(99)00010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033557695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026629630902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035229033", 
          "https://doi.org/10.1023/a:1026629630902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035540755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-9389-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036737466", 
          "https://doi.org/10.1007/s10853-015-9389-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2011.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040576426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2011.12.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046195331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(78)90110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(78)90110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja202243j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055849777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja202243j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055849777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz300461h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056134470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1657732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057735639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3735/12/11/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058970920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/15/8/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059083263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.139.a185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060430975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.139.a185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060430975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.8378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.8378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.12572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.12572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/ssp.194.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072156447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2017.03.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085207056"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "Elemental powder mixtures of Fe, Co and Sn of initial compositions Fe50\u2212y/2Co50\u2212y/2Sny(2 \u2264y \u2264 26) are ball-milled at high-energy. They yield metastable alloys which are predominantly composed of a supersaturated bcc Fe-Co-Sn phase. The amount of tin dissolved in it is at least \u02dc15 at.% in the dynamical conditions of milling which were selected. A recently discovered stannide, CoSn5, passed hitherto unobserved in Co\u2013Sn binary phase diagrams. It forms at Co-Sn interfaces at very short milling times, 0.5h, thanks to the high-diffusivity of cobalt in tin. Finally, neutron diffraction and 119Sn M\u00f6ssbauer spectroscopy show that metastable B2 ordering develops in as-milled alloys, for y \u2264 26, when they are further annealed at modest temperature, here for 15h at 675K. The tendency to long-range order in ternary Fe-Co-Sn bcc alloys is thus observed in metastable alloys.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10751-017-1453-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038685", 
        "issn": [
          "0304-3843", 
          "1572-9540"
        ], 
        "name": "Hyperfine Interactions", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "238"
      }
    ], 
    "name": "Mechanosynthesis of bcc alloys from Fe50\u2212y/2Co50\u2212y/2Sny mixtures (2 \u2264 y \u2264 33) and B2 ordering by annealing at modest temperatures", 
    "pagination": "76", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a93c4a981b1a7b622060c432d0e4dff9c627f99e3851ba7ffc69e96955a1599"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10751-017-1453-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092292066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10751-017-1453-3", 
      "https://app.dimensions.ai/details/publication/pub.1092292066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000565.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10751-017-1453-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-017-1453-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-017-1453-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-017-1453-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-017-1453-3'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10751-017-1453-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2adf973baaec4044a0ed956f4bc369f0
4 schema:citation sg:pub.10.1007/bf02647712
5 sg:pub.10.1007/s10853-015-9389-y
6 sg:pub.10.1007/s10853-016-9879-6
7 sg:pub.10.1023/a:1026629630902
8 https://doi.org/10.1016/0304-8853(78)90110-5
9 https://doi.org/10.1016/0375-9601(67)90058-8
10 https://doi.org/10.1016/0375-9601(85)90012-x
11 https://doi.org/10.1016/j.commatsci.2015.08.057
12 https://doi.org/10.1016/j.electacta.2011.05.069
13 https://doi.org/10.1016/j.ijhydene.2017.03.193
14 https://doi.org/10.1016/j.jallcom.2011.12.036
15 https://doi.org/10.1016/j.jallcom.2013.12.071
16 https://doi.org/10.1016/j.pmatsci.2005.04.001
17 https://doi.org/10.1016/s0079-6425(99)00010-9
18 https://doi.org/10.1021/ja202243j
19 https://doi.org/10.1021/jz300461h
20 https://doi.org/10.1039/a804645j
21 https://doi.org/10.1039/c4ta06960a
22 https://doi.org/10.1063/1.1657732
23 https://doi.org/10.1088/0022-3735/12/11/018
24 https://doi.org/10.1088/0305-4608/15/8/019
25 https://doi.org/10.1103/physrev.139.a185
26 https://doi.org/10.1103/physrevb.53.8378
27 https://doi.org/10.1103/physrevb.55.12572
28 https://doi.org/10.1149/1.1493855
29 https://doi.org/10.4028/www.scientific.net/ssp.194.187
30 schema:datePublished 2017-11
31 schema:datePublishedReg 2017-11-01
32 schema:description Elemental powder mixtures of Fe, Co and Sn of initial compositions Fe50−y/2Co50−y/2Sny(2 ≤y ≤ 26) are ball-milled at high-energy. They yield metastable alloys which are predominantly composed of a supersaturated bcc Fe-Co-Sn phase. The amount of tin dissolved in it is at least ˜15 at.% in the dynamical conditions of milling which were selected. A recently discovered stannide, CoSn5, passed hitherto unobserved in Co–Sn binary phase diagrams. It forms at Co-Sn interfaces at very short milling times, 0.5h, thanks to the high-diffusivity of cobalt in tin. Finally, neutron diffraction and 119Sn Mössbauer spectroscopy show that metastable B2 ordering develops in as-milled alloys, for y ≤ 26, when they are further annealed at modest temperature, here for 15h at 675K. The tendency to long-range order in ternary Fe-Co-Sn bcc alloys is thus observed in metastable alloys.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N3c60e92891b845519f822021d9f632e0
37 N54fc1c9ace17470c991efbff71b11770
38 sg:journal.1038685
39 schema:name Mechanosynthesis of bcc alloys from Fe50−y/2Co50−y/2Sny mixtures (2 ≤ y ≤ 33) and B2 ordering by annealing at modest temperatures
40 schema:pagination 76
41 schema:productId N1a613fafda1f450db67a77b31b66eb70
42 N3c8168a75e6e480da5c9b2e760954455
43 N4db0e50acc9345ac9f1a76bd3035b289
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092292066
45 https://doi.org/10.1007/s10751-017-1453-3
46 schema:sdDatePublished 2019-04-10T14:18
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N32852edb2d534d0f9813b09a027f0fa9
49 schema:url https://link.springer.com/10.1007%2Fs10751-017-1453-3
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1a613fafda1f450db67a77b31b66eb70 schema:name doi
54 schema:value 10.1007/s10751-017-1453-3
55 rdf:type schema:PropertyValue
56 N1ae95dcb0af04274872f581427fe4b29 rdf:first sg:person.0611234136.29
57 rdf:rest rdf:nil
58 N230a3d8f7f8f4784b5e68addb004675f rdf:first sg:person.07546673773.05
59 rdf:rest N7ebd9d56650542b8a124e55e882fc45c
60 N2adf973baaec4044a0ed956f4bc369f0 rdf:first sg:person.015210137612.37
61 rdf:rest N230a3d8f7f8f4784b5e68addb004675f
62 N32852edb2d534d0f9813b09a027f0fa9 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N3c60e92891b845519f822021d9f632e0 schema:volumeNumber 238
65 rdf:type schema:PublicationVolume
66 N3c8168a75e6e480da5c9b2e760954455 schema:name readcube_id
67 schema:value 0a93c4a981b1a7b622060c432d0e4dff9c627f99e3851ba7ffc69e96955a1599
68 rdf:type schema:PropertyValue
69 N4db0e50acc9345ac9f1a76bd3035b289 schema:name dimensions_id
70 schema:value pub.1092292066
71 rdf:type schema:PropertyValue
72 N54fc1c9ace17470c991efbff71b11770 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N7720b23da928431cbb739d38726302f9 rdf:first sg:person.013705407651.19
75 rdf:rest N1ae95dcb0af04274872f581427fe4b29
76 N7ebd9d56650542b8a124e55e882fc45c rdf:first sg:person.012734720237.01
77 rdf:rest N7720b23da928431cbb739d38726302f9
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1038685 schema:issn 0304-3843
85 1572-9540
86 schema:name Hyperfine Interactions
87 rdf:type schema:Periodical
88 sg:person.012734720237.01 schema:affiliation https://www.grid.ac/institutes/grid.461893.1
89 schema:familyName Caër
90 schema:givenName G. Le
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734720237.01
92 rdf:type schema:Person
93 sg:person.013705407651.19 schema:affiliation https://www.grid.ac/institutes/grid.8051.c
94 schema:familyName Gordo
95 schema:givenName P. M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705407651.19
97 rdf:type schema:Person
98 sg:person.015210137612.37 schema:affiliation https://www.grid.ac/institutes/grid.8051.c
99 schema:familyName Costa
100 schema:givenName B. F. O.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210137612.37
102 rdf:type schema:Person
103 sg:person.0611234136.29 schema:affiliation https://www.grid.ac/institutes/grid.8051.c
104 schema:familyName Ramalho
105 schema:givenName A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611234136.29
107 rdf:type schema:Person
108 sg:person.07546673773.05 schema:affiliation https://www.grid.ac/institutes/grid.461892.0
109 schema:familyName Malaman
110 schema:givenName B.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546673773.05
112 rdf:type schema:Person
113 sg:pub.10.1007/bf02647712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004729579
114 https://doi.org/10.1007/bf02647712
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10853-015-9389-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036737466
117 https://doi.org/10.1007/s10853-015-9389-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10853-016-9879-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032802798
120 https://doi.org/10.1007/s10853-016-9879-6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1026629630902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035229033
123 https://doi.org/10.1023/a:1026629630902
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0304-8853(78)90110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802586
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0375-9601(67)90058-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013904885
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0375-9601(85)90012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019351067
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.commatsci.2015.08.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007403684
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.electacta.2011.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040576426
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijhydene.2017.03.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085207056
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jallcom.2011.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046195331
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jallcom.2013.12.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007761678
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.pmatsci.2005.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035540755
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0079-6425(99)00010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033557695
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/ja202243j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055849777
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/jz300461h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056134470
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1039/a804645j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009228572
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1039/c4ta06960a schema:sameAs https://app.dimensions.ai/details/publication/pub.1002677321
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.1657732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057735639
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0022-3735/12/11/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058970920
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/0305-4608/15/8/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059083263
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrev.139.a185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060430975
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.53.8378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580741
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.55.12572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583563
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1149/1.1493855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417971
166 rdf:type schema:CreativeWork
167 https://doi.org/10.4028/www.scientific.net/ssp.194.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072156447
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.461892.0 schema:alternateName Institut Jean Lamour
170 schema:name Institut Jean Lamour, Département P2M, Equipe 103, CNRS (UMR 7198)- Université de Nancy, B.P. 70239, 54506, Vandoeuvre-les-Nancy Cedex, France
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.461893.1 schema:alternateName Institut de Physique de Rennes
173 schema:name Institut de Physique de Rennes, UMR URI-CNRS 6251, Université de Rennes I, Campus de Beaulieu, Bat 11A, 35042, Rennes Cedex, France
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.8051.c schema:alternateName University of Coimbra
176 schema:name CEMUC, Department of Mechanical Engineering, University of Coimbra, 3000-272, Coimbra, Portugal
177 CFisUC, Physics Department, University of Coimbra, 3004-516, Coimbra, Portugal
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...