Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mössbauer spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-11

AUTHORS

M. Campos, S. D. de Souza, S. de Souza, M. Olzon-Dionysio

ABSTRACT

Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic γ′ phase (Fe4N), the hexagonal phase ε (Fe2 − 3N) and a nitrogen supersatured solid phase γN. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Mössbauer Spectroscopy results: the larger the ratio between ε and γ′ phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for ε/γ′ is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h (ε/γ′ = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the γN phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the γN phase. More... »

PAGES

105-112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10751-011-0351-3

DOI

http://dx.doi.org/10.1007/s10751-011-0351-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015067962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de F\u00edsica, Universidade Federal de S\u00e3o Carlos, 13565-950, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campos", 
        "givenName": "M.", 
        "id": "sg:person.015010561521.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010561521.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de F\u00edsica, Universidade Federal de S\u00e3o Carlos, 13565-950, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "S. D.", 
        "id": "sg:person.07371642111.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07371642111.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Pesquisas Energ\u00e9ticas e Nucleares", 
          "id": "https://www.grid.ac/institutes/grid.466806.a", 
          "name": [
            "Centro de Ci\u00eancia e Tecnologia de Materiais, Instituto de Pesquisas Energ\u00e9ticas e Nucleares, 05508-000, S\u00e3o Paulo, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de F\u00edsica, Universidade Federal de S\u00e3o Carlos, 13565-950, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olzon-Dionysio", 
        "givenName": "M.", 
        "id": "sg:person.011267130362.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267130362.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2010.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000370156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00540806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001915239", 
          "https://doi.org/10.1007/bf00540806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(00)00836-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008359318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02661752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016133843", 
          "https://doi.org/10.1007/bf02661752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02661752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016133843", 
          "https://doi.org/10.1007/bf02661752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2010.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020849491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(69)90129-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(69)90129-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(92)91062-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032328022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(92)91062-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032328022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035061082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2007.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0257-8972(02)00185-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048410945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(01)00426-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052365965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.corsci.2005.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052617799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.358561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.33.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063099781"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11", 
    "datePublishedReg": "2011-11-01", 
    "description": "Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic \u03b3\u2032 phase (Fe4N), the hexagonal phase \u03b5 (Fe2 \u2212 3N) and a nitrogen supersatured solid phase \u03b3N. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on M\u00f6ssbauer Spectroscopy results: the larger the ratio between \u03b5 and \u03b3\u2032 phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for \u03b5/\u03b3\u2032 is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h (\u03b5/\u03b3\u2032 = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the \u03b3N phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the \u03b3N phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10751-011-0351-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1038685", 
        "issn": [
          "0304-3843", 
          "1572-9540"
        ], 
        "name": "Hyperfine Interactions", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "203"
      }
    ], 
    "name": "Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on M\u00f6ssbauer spectroscopy", 
    "pagination": "105-112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47c9ce2673d694aa9c287c7a84497e1de3a624fe498cbdf96ca75f2ac8f44aa7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10751-011-0351-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015067962"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10751-011-0351-3", 
      "https://app.dimensions.ai/details/publication/pub.1015067962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10751-011-0351-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10751-011-0351-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10751-011-0351-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10751-011-0351-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10751-011-0351-3'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10751-011-0351-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6b2a417946e84a309548b63ab19d6442
4 schema:citation sg:pub.10.1007/bf00540806
5 sg:pub.10.1007/bf02661752
6 https://doi.org/10.1016/0038-1098(69)90129-x
7 https://doi.org/10.1016/0304-8853(92)91062-x
8 https://doi.org/10.1016/j.corsci.2005.06.006
9 https://doi.org/10.1016/j.matchar.2010.06.015
10 https://doi.org/10.1016/j.msea.2006.06.023
11 https://doi.org/10.1016/j.surfcoat.2007.12.040
12 https://doi.org/10.1016/j.surfcoat.2010.04.034
13 https://doi.org/10.1016/s0257-8972(00)00836-7
14 https://doi.org/10.1016/s0257-8972(02)00185-8
15 https://doi.org/10.1016/s0304-8853(01)00426-7
16 https://doi.org/10.1063/1.358561
17 https://doi.org/10.1143/jpsj.33.62
18 schema:datePublished 2011-11
19 schema:datePublishedReg 2011-11-01
20 schema:description Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic γ′ phase (Fe4N), the hexagonal phase ε (Fe2 − 3N) and a nitrogen supersatured solid phase γN. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Mössbauer Spectroscopy results: the larger the ratio between ε and γ′ phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for ε/γ′ is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h (ε/γ′ = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the γN phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the γN phase.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N170eb9dfc3ad482abaa2e11a02d7eb49
25 Nab3d16369161487ab3acc48c67a22c8e
26 sg:journal.1038685
27 schema:name Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mössbauer spectroscopy
28 schema:pagination 105-112
29 schema:productId N176f79269bb24fce8dba0ca19db38d76
30 N7128691e8c7144038b7ccc5b92335d4d
31 N7c891d5d181e43f0b4bd664faa57994b
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015067962
33 https://doi.org/10.1007/s10751-011-0351-3
34 schema:sdDatePublished 2019-04-10T19:57
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N33e176e09c354fa39361a3c076719299
37 schema:url http://link.springer.com/10.1007%2Fs10751-011-0351-3
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N170eb9dfc3ad482abaa2e11a02d7eb49 schema:issueNumber 1-3
42 rdf:type schema:PublicationIssue
43 N176f79269bb24fce8dba0ca19db38d76 schema:name dimensions_id
44 schema:value pub.1015067962
45 rdf:type schema:PropertyValue
46 N24ef09b42cef4b44b706913660df3612 rdf:first sg:person.011267130362.18
47 rdf:rest rdf:nil
48 N33e176e09c354fa39361a3c076719299 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N3c0edc96db9245cf805a2438528cf077 rdf:first Nffb8add64aad4886b86d7d8833fd2505
51 rdf:rest N24ef09b42cef4b44b706913660df3612
52 N6b2a417946e84a309548b63ab19d6442 rdf:first sg:person.015010561521.07
53 rdf:rest Nf1e7cc732f634fdf81ab68fc129554b3
54 N7128691e8c7144038b7ccc5b92335d4d schema:name readcube_id
55 schema:value 47c9ce2673d694aa9c287c7a84497e1de3a624fe498cbdf96ca75f2ac8f44aa7
56 rdf:type schema:PropertyValue
57 N7c891d5d181e43f0b4bd664faa57994b schema:name doi
58 schema:value 10.1007/s10751-011-0351-3
59 rdf:type schema:PropertyValue
60 Nab3d16369161487ab3acc48c67a22c8e schema:volumeNumber 203
61 rdf:type schema:PublicationVolume
62 Nf1e7cc732f634fdf81ab68fc129554b3 rdf:first sg:person.07371642111.97
63 rdf:rest N3c0edc96db9245cf805a2438528cf077
64 Nffb8add64aad4886b86d7d8833fd2505 schema:affiliation https://www.grid.ac/institutes/grid.466806.a
65 schema:familyName de Souza
66 schema:givenName S.
67 rdf:type schema:Person
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1038685 schema:issn 0304-3843
75 1572-9540
76 schema:name Hyperfine Interactions
77 rdf:type schema:Periodical
78 sg:person.011267130362.18 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
79 schema:familyName Olzon-Dionysio
80 schema:givenName M.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267130362.18
82 rdf:type schema:Person
83 sg:person.015010561521.07 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
84 schema:familyName Campos
85 schema:givenName M.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010561521.07
87 rdf:type schema:Person
88 sg:person.07371642111.97 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
89 schema:familyName de Souza
90 schema:givenName S. D.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07371642111.97
92 rdf:type schema:Person
93 sg:pub.10.1007/bf00540806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001915239
94 https://doi.org/10.1007/bf00540806
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02661752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016133843
97 https://doi.org/10.1007/bf02661752
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0038-1098(69)90129-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809251
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0304-8853(92)91062-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032328022
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.corsci.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052617799
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.matchar.2010.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020849491
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.msea.2006.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035061082
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.surfcoat.2007.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967106
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.surfcoat.2010.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000370156
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0257-8972(00)00836-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008359318
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0257-8972(02)00185-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048410945
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0304-8853(01)00426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052365965
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.358561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979598
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1143/jpsj.33.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063099781
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
124 schema:name Departamento de Física, Universidade Federal de São Carlos, 13565-950, São Carlos, SP, Brazil
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.466806.a schema:alternateName Instituto de Pesquisas Energéticas e Nucleares
127 schema:name Centro de Ciência e Tecnologia de Materiais, Instituto de Pesquisas Energéticas e Nucleares, 05508-000, São Paulo, SP, Brazil
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...