Methane emissions from Mexican freshwater bodies: correlations with water pollution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08-08

AUTHORS

Rodrigo Gonzalez-Valencia, Armando Sepulveda-Jauregui, Karla Martinez-Cruz, Jorge Hoyos-Santillan, Luc Dendooven, Frederic Thalasso

ABSTRACT

The literature concerning methane (CH4) emissions from temperate and boreal lakes is extensive, but emissions from tropical and subtropical lakes have been less documented. In particular, methane emissions from Mexican lakes, which are often polluted by anthropogenic carbon and nutrient inputs, have not been reported previously. In this work, methane emissions from six Mexican lakes were measured, covering a broad range of organic inputs, trophic states, and climatic conditions. Methane emissions ranged from 5 to 5,000 mg CH4 m−2 day−1. Water samples from several depths in each lake were analyzed for correlation between water quality indicators and methane emissions. Trophic state and water quality indexes were most strongly correlated with methane fluxes. The global methane flux from Mexican freshwater lakes was estimated to be approximately 1.3 Tg CH4 year−1, which is about 20% of methane and 4.4% of total national greenhouse gas emissions. Data for untreated wastewater releases to the environment gave an emission factor of 0.19 kg CH4 kg−1 of Biochemical Oxygen Demand, which is superior to that previously estimated by the IPCC for lake discharges. Thus, the large volume of untreated wastewater in Mexico implies higher methane emission than previously estimated. More... »

PAGES

9-22

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10750-013-1632-4

DOI

http://dx.doi.org/10.1007/s10750-013-1632-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053291191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez-Valencia", 
        "givenName": "Rodrigo", 
        "id": "sg:person.0665460610.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665460610.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sepulveda-Jauregui", 
        "givenName": "Armando", 
        "id": "sg:person.0752377744.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752377744.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez-Cruz", 
        "givenName": "Karla", 
        "id": "sg:person.0704264544.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704264544.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoyos-Santillan", 
        "givenName": "Jorge", 
        "id": "sg:person.07620153501.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620153501.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), ABACUS, Av. IPN 2508, 07360, Mexico, DF, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), ABACUS, Av. IPN 2508, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dendooven", 
        "givenName": "Luc", 
        "id": "sg:person.01137236547.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137236547.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Departamento de Biotecnolog\u00eda y Bioingenier\u00eda, Centro de Investigaci\u00f3n y de Estudios Avanzados del Instituto Polit\u00e9cnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalasso", 
        "givenName": "Frederic", 
        "id": "sg:person.01066626344.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066626344.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10750-010-0211-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026615087", 
          "https://doi.org/10.1007/s10750-010-0211-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-009-0182-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042655529", 
          "https://doi.org/10.1007/s11356-009-0182-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006269900174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019189790", 
          "https://doi.org/10.1023/a:1006269900174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-010-9440-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036788638", 
          "https://doi.org/10.1007/s10533-010-9440-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08-08", 
    "datePublishedReg": "2013-08-08", 
    "description": "The literature concerning methane (CH4) emissions from temperate and boreal lakes is extensive, but emissions from tropical and subtropical lakes have been less documented. In particular, methane emissions from Mexican lakes, which are often polluted by anthropogenic carbon and nutrient inputs, have not been reported previously. In this work, methane emissions from six Mexican lakes were measured, covering a broad range of organic inputs, trophic states, and climatic conditions. Methane emissions ranged from 5 to 5,000\u00a0mg CH4\u00a0m\u22122\u00a0day\u22121. Water samples from several depths in each lake were analyzed for correlation between water quality indicators and methane emissions. Trophic state and water quality indexes were most strongly correlated with methane fluxes. The global methane flux from Mexican freshwater lakes was estimated to be approximately 1.3 Tg CH4\u00a0year\u22121, which is about 20% of methane and 4.4% of total national greenhouse gas emissions. Data for untreated wastewater releases to the environment gave an emission factor of 0.19\u00a0kg CH4\u00a0kg\u22121 of Biochemical Oxygen Demand, which is superior to that previously estimated by the IPCC for lake discharges. Thus, the large volume of untreated wastewater in Mexico implies higher methane emission than previously estimated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10750-013-1632-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023171", 
        "issn": [
          "1037-0544", 
          "1573-5117"
        ], 
        "name": "Hydrobiologia", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "721"
      }
    ], 
    "keywords": [
      "methane emissions", 
      "methane flux", 
      "trophic state", 
      "Mexican lakes", 
      "total national greenhouse gas emissions", 
      "Mexican freshwater bodies", 
      "water quality indicators", 
      "global methane flux", 
      "high methane emissions", 
      "water quality index", 
      "national greenhouse gas emissions", 
      "freshwater bodies", 
      "freshwater lakes", 
      "biochemical oxygen demand", 
      "greenhouse gas emissions", 
      "wastewater release", 
      "organic inputs", 
      "nutrient inputs", 
      "Tg CH4", 
      "water pollution", 
      "subtropical lake", 
      "untreated wastewater", 
      "climatic conditions", 
      "lakes", 
      "gas emissions", 
      "water samples", 
      "anthropogenic carbon", 
      "emission factors", 
      "Quality Index", 
      "quality indicators", 
      "oxygen demand", 
      "CH4", 
      "temperate", 
      "lake discharge", 
      "emission", 
      "pollution", 
      "IPCC", 
      "carbon", 
      "input", 
      "flux", 
      "Mexico", 
      "depth", 
      "indicators", 
      "broad range", 
      "wastewater", 
      "methane", 
      "environment", 
      "large volumes", 
      "discharge", 
      "index", 
      "correlation", 
      "range", 
      "demand", 
      "samples", 
      "conditions", 
      "release", 
      "work", 
      "factors", 
      "state", 
      "data", 
      "body", 
      "volume", 
      "literature"
    ], 
    "name": "Methane emissions from Mexican freshwater bodies: correlations with water pollution", 
    "pagination": "9-22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053291191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10750-013-1632-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10750-013-1632-4", 
      "https://app.dimensions.ai/details/publication/pub.1053291191"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_615.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10750-013-1632-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10750-013-1632-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10750-013-1632-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10750-013-1632-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10750-013-1632-4'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      92 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10750-013-1632-4 schema:about anzsrc-for:04
2 anzsrc-for:05
3 anzsrc-for:06
4 schema:author N492ebb69d8d34b1280e83d2f19f1e2b8
5 schema:citation sg:pub.10.1007/s10533-010-9440-7
6 sg:pub.10.1007/s10750-010-0211-1
7 sg:pub.10.1007/s11356-009-0182-9
8 sg:pub.10.1023/a:1006269900174
9 schema:datePublished 2013-08-08
10 schema:datePublishedReg 2013-08-08
11 schema:description The literature concerning methane (CH4) emissions from temperate and boreal lakes is extensive, but emissions from tropical and subtropical lakes have been less documented. In particular, methane emissions from Mexican lakes, which are often polluted by anthropogenic carbon and nutrient inputs, have not been reported previously. In this work, methane emissions from six Mexican lakes were measured, covering a broad range of organic inputs, trophic states, and climatic conditions. Methane emissions ranged from 5 to 5,000 mg CH4 m−2 day−1. Water samples from several depths in each lake were analyzed for correlation between water quality indicators and methane emissions. Trophic state and water quality indexes were most strongly correlated with methane fluxes. The global methane flux from Mexican freshwater lakes was estimated to be approximately 1.3 Tg CH4 year−1, which is about 20% of methane and 4.4% of total national greenhouse gas emissions. Data for untreated wastewater releases to the environment gave an emission factor of 0.19 kg CH4 kg−1 of Biochemical Oxygen Demand, which is superior to that previously estimated by the IPCC for lake discharges. Thus, the large volume of untreated wastewater in Mexico implies higher methane emission than previously estimated.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N2a28da5fd7d742f88ad24a4ec87d2d95
15 Nea4b6f57e79f4aeba51bbc71178d8156
16 sg:journal.1023171
17 schema:keywords CH4
18 IPCC
19 Mexican freshwater bodies
20 Mexican lakes
21 Mexico
22 Quality Index
23 Tg CH4
24 anthropogenic carbon
25 biochemical oxygen demand
26 body
27 broad range
28 carbon
29 climatic conditions
30 conditions
31 correlation
32 data
33 demand
34 depth
35 discharge
36 emission
37 emission factors
38 environment
39 factors
40 flux
41 freshwater bodies
42 freshwater lakes
43 gas emissions
44 global methane flux
45 greenhouse gas emissions
46 high methane emissions
47 index
48 indicators
49 input
50 lake discharge
51 lakes
52 large volumes
53 literature
54 methane
55 methane emissions
56 methane flux
57 national greenhouse gas emissions
58 nutrient inputs
59 organic inputs
60 oxygen demand
61 pollution
62 quality indicators
63 range
64 release
65 samples
66 state
67 subtropical lake
68 temperate
69 total national greenhouse gas emissions
70 trophic state
71 untreated wastewater
72 volume
73 wastewater
74 wastewater release
75 water pollution
76 water quality index
77 water quality indicators
78 water samples
79 work
80 schema:name Methane emissions from Mexican freshwater bodies: correlations with water pollution
81 schema:pagination 9-22
82 schema:productId N807b324902ed4055be0cf3c1861c7c05
83 Nbad6b06d599c4828a5836be47f032d58
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053291191
85 https://doi.org/10.1007/s10750-013-1632-4
86 schema:sdDatePublished 2022-09-02T15:56
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N4a4e4eee68704ca5965c9481e87e7a20
89 schema:url https://doi.org/10.1007/s10750-013-1632-4
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N10b99354aa724851b87055a644031475 rdf:first sg:person.01137236547.78
94 rdf:rest N2ba95f02316042f5ae97c3f5b1afd942
95 N2a28da5fd7d742f88ad24a4ec87d2d95 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N2ba95f02316042f5ae97c3f5b1afd942 rdf:first sg:person.01066626344.65
98 rdf:rest rdf:nil
99 N492ebb69d8d34b1280e83d2f19f1e2b8 rdf:first sg:person.0665460610.05
100 rdf:rest N7e37050838044f169db4ad10e659618c
101 N4a4e4eee68704ca5965c9481e87e7a20 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N584b78a558204547a4da2459cf14d993 rdf:first sg:person.0704264544.41
104 rdf:rest Nb650a67d053a4941bd875bbea9a21dc3
105 N7e37050838044f169db4ad10e659618c rdf:first sg:person.0752377744.39
106 rdf:rest N584b78a558204547a4da2459cf14d993
107 N807b324902ed4055be0cf3c1861c7c05 schema:name doi
108 schema:value 10.1007/s10750-013-1632-4
109 rdf:type schema:PropertyValue
110 Nb650a67d053a4941bd875bbea9a21dc3 rdf:first sg:person.07620153501.48
111 rdf:rest N10b99354aa724851b87055a644031475
112 Nbad6b06d599c4828a5836be47f032d58 schema:name dimensions_id
113 schema:value pub.1053291191
114 rdf:type schema:PropertyValue
115 Nea4b6f57e79f4aeba51bbc71178d8156 schema:volumeNumber 721
116 rdf:type schema:PublicationVolume
117 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
118 schema:name Earth Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
121 schema:name Environmental Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biological Sciences
125 rdf:type schema:DefinedTerm
126 sg:journal.1023171 schema:issn 1037-0544
127 1573-5117
128 schema:name Hydrobiologia
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.01066626344.65 schema:affiliation grid-institutes:grid.512574.0
132 schema:familyName Thalasso
133 schema:givenName Frederic
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066626344.65
135 rdf:type schema:Person
136 sg:person.01137236547.78 schema:affiliation grid-institutes:grid.512574.0
137 schema:familyName Dendooven
138 schema:givenName Luc
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137236547.78
140 rdf:type schema:Person
141 sg:person.0665460610.05 schema:affiliation grid-institutes:grid.512574.0
142 schema:familyName Gonzalez-Valencia
143 schema:givenName Rodrigo
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665460610.05
145 rdf:type schema:Person
146 sg:person.0704264544.41 schema:affiliation grid-institutes:grid.512574.0
147 schema:familyName Martinez-Cruz
148 schema:givenName Karla
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704264544.41
150 rdf:type schema:Person
151 sg:person.0752377744.39 schema:affiliation grid-institutes:grid.512574.0
152 schema:familyName Sepulveda-Jauregui
153 schema:givenName Armando
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752377744.39
155 rdf:type schema:Person
156 sg:person.07620153501.48 schema:affiliation grid-institutes:grid.512574.0
157 schema:familyName Hoyos-Santillan
158 schema:givenName Jorge
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620153501.48
160 rdf:type schema:Person
161 sg:pub.10.1007/s10533-010-9440-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036788638
162 https://doi.org/10.1007/s10533-010-9440-7
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10750-010-0211-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026615087
165 https://doi.org/10.1007/s10750-010-0211-1
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11356-009-0182-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042655529
168 https://doi.org/10.1007/s11356-009-0182-9
169 rdf:type schema:CreativeWork
170 sg:pub.10.1023/a:1006269900174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019189790
171 https://doi.org/10.1023/a:1006269900174
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.512574.0 schema:alternateName Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), ABACUS, Av. IPN 2508, 07360, Mexico, DF, Mexico
174 Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico
175 schema:name Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), ABACUS, Av. IPN 2508, 07360, Mexico, DF, Mexico
176 Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360, Mexico, DF, Mexico
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...