Data-oriented analyses of ciliate foraging behaviors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05

AUTHORS

Yang-Chi Chang, Jang-Ching Yan, Jiang-Shiou Hwang, Cheng-Han Wu, Meng-Tsung Lee

ABSTRACT

Optimal foraging theory states that natural selection makes foragers efficient food harvesters and maximizing a colony’s energy intake. This study presumed that the ciliates foraging trajectories follow optimal foraging theory, verified the presumption and discover specific rules and patterns hidden in the ciliate’s trajectories data using methodologies of statistical, cluster analyses, and decision tree analysis. This study examined the foraging behaviors of ciliates by video recordings and quantitative analyses of movement trajectories under four nourishment conditions (low, medium, high, and highest concentrations). Similar biological studies adopt statistical analyses to certain locomotion indices to determine the responses of plankton to various aquatic environments. In addition to statistical analyses, cluster analysis was used in this study to confirm the observations of the statistical analyses. The statistical analysis and cluster analysis results in this study revealed two distinct groups of trajectories or behaviors, which matched the optimal foraging theory. Decision tree analysis was then applied to acquire objective information regarding foraging behaviors, and further detailed the foraging behaviors with explicit classification rules using locomotion indices. The production rules can play an alternative role to assess the sustainability of an aquatic environment in terms of algae concentration. More... »

PAGES

223-237

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10750-010-0548-5

DOI

http://dx.doi.org/10.1007/s10750-010-0548-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045910745


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.412036.2", 
          "name": [
            "Department of Marine Environment & Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Yang-Chi", 
        "id": "sg:person.013740265203.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740265203.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.412036.2", 
          "name": [
            "Department of Marine Environment & Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Jang-Ching", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan Ocean University", 
          "id": "https://www.grid.ac/institutes/grid.260664.0", 
          "name": [
            "Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jiang-Shiou", 
        "id": "sg:person.01153225403.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153225403.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan Ocean University", 
          "id": "https://www.grid.ac/institutes/grid.260664.0", 
          "name": [
            "Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Cheng-Han", 
        "id": "sg:person.07667100121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667100121.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Kaohsiung Marine University", 
          "id": "https://www.grid.ac/institutes/grid.412074.4", 
          "name": [
            "Department of Marine Leisure Management, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Meng-Tsung", 
        "id": "sg:person.016051206273.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016051206273.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/plankt/25.9.1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004099268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cbmr.1995.1013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004791998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1699(96)00016-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007514529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/chemse/bjh009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008461128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2004.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010568441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2004.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010568441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1995.3.4.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00951825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017518605", 
          "https://doi.org/10.1007/bf00951825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0950-7051(01)00145-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018371765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422208", 
          "https://doi.org/10.1007/bf00116251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-006-0385-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020236368", 
          "https://doi.org/10.1007/s00442-006-0385-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-006-0385-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020236368", 
          "https://doi.org/10.1007/s00442-006-0385-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0951-8320(00)00051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022734713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00349281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029620132", 
          "https://doi.org/10.1007/bf00349281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(1998)008[0480:eaoacn]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031155111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(02)00139-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031699149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(02)00139-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031699149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.en.34.010189.001203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033832829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/fbi051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043892406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2006.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045218589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2647(99)00066-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046092305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1699(03)00119-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1699(03)00119-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022622013558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050155712", 
          "https://doi.org/10.1023/a:1022622013558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00041-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050281192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00338-005-0085-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408340", 
          "https://doi.org/10.1007/s00338-005-0085-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00338-005-0085-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408340", 
          "https://doi.org/10.1007/s00338-005-0085-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ecss.2000.0617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054487471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.156.3775.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062491159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps283199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071177660"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05", 
    "datePublishedReg": "2011-05-01", 
    "description": "Optimal foraging theory states that natural selection makes foragers efficient food harvesters and maximizing a colony\u2019s energy intake. This study presumed that the ciliates foraging trajectories follow optimal foraging theory, verified the presumption and discover specific rules and patterns hidden in the ciliate\u2019s trajectories data using methodologies of statistical, cluster analyses, and decision tree analysis. This study examined the foraging behaviors of ciliates by video recordings and quantitative analyses of movement trajectories under four nourishment conditions (low, medium, high, and highest concentrations). Similar biological studies adopt statistical analyses to certain locomotion indices to determine the responses of plankton to various aquatic environments. In addition to statistical analyses, cluster analysis was used in this study to confirm the observations of the statistical analyses. The statistical analysis and cluster analysis results in this study revealed two distinct groups of trajectories or behaviors, which matched the optimal foraging theory. Decision tree analysis was then applied to acquire objective information regarding foraging behaviors, and further detailed the foraging behaviors with explicit classification rules using locomotion indices. The production rules can play an alternative role to assess the sustainability of an aquatic environment in terms of algae concentration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10750-010-0548-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023171", 
        "issn": [
          "1037-0544", 
          "1573-8590"
        ], 
        "name": "Hydrobiologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "666"
      }
    ], 
    "name": "Data-oriented analyses of ciliate foraging behaviors", 
    "pagination": "223-237", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dab1a0eead6b770e7fbad3c31ca5eb969175eb305fd32173eb344cede22fb56e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10750-010-0548-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045910745"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10750-010-0548-5", 
      "https://app.dimensions.ai/details/publication/pub.1045910745"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10750-010-0548-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10750-010-0548-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10750-010-0548-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10750-010-0548-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10750-010-0548-5'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10750-010-0548-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb3eeca61b8f04844af3f13faeda12500
4 schema:citation sg:pub.10.1007/bf00116251
5 sg:pub.10.1007/bf00349281
6 sg:pub.10.1007/bf00951825
7 sg:pub.10.1007/s00338-005-0085-2
8 sg:pub.10.1007/s00442-006-0385-4
9 sg:pub.10.1023/a:1022622013558
10 https://doi.org/10.1006/cbmr.1995.1013
11 https://doi.org/10.1006/ecss.2000.0617
12 https://doi.org/10.1016/0168-1699(96)00016-6
13 https://doi.org/10.1016/j.eswa.2006.05.008
14 https://doi.org/10.1016/j.ymeth.2004.08.021
15 https://doi.org/10.1016/s0031-3203(99)00041-2
16 https://doi.org/10.1016/s0168-1699(03)00119-4
17 https://doi.org/10.1016/s0303-2647(99)00066-0
18 https://doi.org/10.1016/s0950-7051(01)00145-9
19 https://doi.org/10.1016/s0951-8320(00)00051-x
20 https://doi.org/10.1016/s0957-4174(02)00139-2
21 https://doi.org/10.1093/chemse/bjh009
22 https://doi.org/10.1093/plankt/25.9.1157
23 https://doi.org/10.1093/plankt/fbi051
24 https://doi.org/10.1126/science.156.3775.636
25 https://doi.org/10.1146/annurev.en.34.010189.001203
26 https://doi.org/10.1162/evco.1995.3.4.375
27 https://doi.org/10.1890/1051-0761(1998)008[0480:eaoacn]2.0.co;2
28 https://doi.org/10.3354/meps283199
29 schema:datePublished 2011-05
30 schema:datePublishedReg 2011-05-01
31 schema:description Optimal foraging theory states that natural selection makes foragers efficient food harvesters and maximizing a colony’s energy intake. This study presumed that the ciliates foraging trajectories follow optimal foraging theory, verified the presumption and discover specific rules and patterns hidden in the ciliate’s trajectories data using methodologies of statistical, cluster analyses, and decision tree analysis. This study examined the foraging behaviors of ciliates by video recordings and quantitative analyses of movement trajectories under four nourishment conditions (low, medium, high, and highest concentrations). Similar biological studies adopt statistical analyses to certain locomotion indices to determine the responses of plankton to various aquatic environments. In addition to statistical analyses, cluster analysis was used in this study to confirm the observations of the statistical analyses. The statistical analysis and cluster analysis results in this study revealed two distinct groups of trajectories or behaviors, which matched the optimal foraging theory. Decision tree analysis was then applied to acquire objective information regarding foraging behaviors, and further detailed the foraging behaviors with explicit classification rules using locomotion indices. The production rules can play an alternative role to assess the sustainability of an aquatic environment in terms of algae concentration.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N04727e6ee34b4696a16f8ffb57e772dc
36 N962d13f5d006429c99aae8bad05c1467
37 sg:journal.1023171
38 schema:name Data-oriented analyses of ciliate foraging behaviors
39 schema:pagination 223-237
40 schema:productId N870e08c974894bc9be9c53fdf683cb11
41 Na34c6db045d1411e97cac025f19188a8
42 Na3cdc7d289ed40df8f29ffbb75ad7e64
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045910745
44 https://doi.org/10.1007/s10750-010-0548-5
45 schema:sdDatePublished 2019-04-10T18:24
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Na93320284b514dc19ee1b13c5301aad5
48 schema:url http://link.springer.com/10.1007%2Fs10750-010-0548-5
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N04727e6ee34b4696a16f8ffb57e772dc schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 N6a4fef59e3bf4227b4f273156c069cfb schema:affiliation https://www.grid.ac/institutes/grid.412036.2
55 schema:familyName Yan
56 schema:givenName Jang-Ching
57 rdf:type schema:Person
58 N7a3f1e5fbfab4df6b8a5d86c2c9d2000 rdf:first sg:person.07667100121.99
59 rdf:rest Nbe8a07c6e3034bde851b238fff9de8de
60 N870e08c974894bc9be9c53fdf683cb11 schema:name readcube_id
61 schema:value dab1a0eead6b770e7fbad3c31ca5eb969175eb305fd32173eb344cede22fb56e
62 rdf:type schema:PropertyValue
63 N8978385e5d5e46bca0ad83306b57c0aa rdf:first N6a4fef59e3bf4227b4f273156c069cfb
64 rdf:rest Nb650fd75b39b4181b0e97e567e6a5c2e
65 N962d13f5d006429c99aae8bad05c1467 schema:volumeNumber 666
66 rdf:type schema:PublicationVolume
67 Na34c6db045d1411e97cac025f19188a8 schema:name doi
68 schema:value 10.1007/s10750-010-0548-5
69 rdf:type schema:PropertyValue
70 Na3cdc7d289ed40df8f29ffbb75ad7e64 schema:name dimensions_id
71 schema:value pub.1045910745
72 rdf:type schema:PropertyValue
73 Na93320284b514dc19ee1b13c5301aad5 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nb3eeca61b8f04844af3f13faeda12500 rdf:first sg:person.013740265203.09
76 rdf:rest N8978385e5d5e46bca0ad83306b57c0aa
77 Nb650fd75b39b4181b0e97e567e6a5c2e rdf:first sg:person.01153225403.37
78 rdf:rest N7a3f1e5fbfab4df6b8a5d86c2c9d2000
79 Nbe8a07c6e3034bde851b238fff9de8de rdf:first sg:person.016051206273.27
80 rdf:rest rdf:nil
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:journal.1023171 schema:issn 1037-0544
88 1573-8590
89 schema:name Hydrobiologia
90 rdf:type schema:Periodical
91 sg:person.01153225403.37 schema:affiliation https://www.grid.ac/institutes/grid.260664.0
92 schema:familyName Hwang
93 schema:givenName Jiang-Shiou
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153225403.37
95 rdf:type schema:Person
96 sg:person.013740265203.09 schema:affiliation https://www.grid.ac/institutes/grid.412036.2
97 schema:familyName Chang
98 schema:givenName Yang-Chi
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740265203.09
100 rdf:type schema:Person
101 sg:person.016051206273.27 schema:affiliation https://www.grid.ac/institutes/grid.412074.4
102 schema:familyName Lee
103 schema:givenName Meng-Tsung
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016051206273.27
105 rdf:type schema:Person
106 sg:person.07667100121.99 schema:affiliation https://www.grid.ac/institutes/grid.260664.0
107 schema:familyName Wu
108 schema:givenName Cheng-Han
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667100121.99
110 rdf:type schema:Person
111 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
112 https://doi.org/10.1007/bf00116251
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00349281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029620132
115 https://doi.org/10.1007/bf00349281
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00951825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017518605
118 https://doi.org/10.1007/bf00951825
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00338-005-0085-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408340
121 https://doi.org/10.1007/s00338-005-0085-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00442-006-0385-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020236368
124 https://doi.org/10.1007/s00442-006-0385-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1022622013558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050155712
127 https://doi.org/10.1023/a:1022622013558
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1006/cbmr.1995.1013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004791998
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/ecss.2000.0617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054487471
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0168-1699(96)00016-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007514529
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.eswa.2006.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045218589
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ymeth.2004.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010568441
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0031-3203(99)00041-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050281192
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0168-1699(03)00119-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046931803
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0303-2647(99)00066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046092305
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0950-7051(01)00145-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018371765
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0951-8320(00)00051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022734713
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0957-4174(02)00139-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031699149
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/chemse/bjh009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008461128
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/plankt/25.9.1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004099268
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/plankt/fbi051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043892406
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.156.3775.636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062491159
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1146/annurev.en.34.010189.001203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033832829
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1162/evco.1995.3.4.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013203516
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1890/1051-0761(1998)008[0480:eaoacn]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031155111
164 rdf:type schema:CreativeWork
165 https://doi.org/10.3354/meps283199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071177660
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.260664.0 schema:alternateName National Taiwan Ocean University
168 schema:name Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.412036.2 schema:alternateName National Sun Yat-sen University
171 schema:name Department of Marine Environment & Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.412074.4 schema:alternateName National Kaohsiung Marine University
174 schema:name Department of Marine Leisure Management, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...