An ecosystem model of the phytoplankton competition in the East China Sea, as based on field experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-03

AUTHORS

Yanbin Li, Xiulin Wang, Xiurong Han, Keqiang Li, Xixi Zhao, Xiaoyong Shi

ABSTRACT

An ecological dynamic model for the simulation of two pelagic phytoplankton groups is developed in this article. Model parameters were adjusted and validated based on the light-limited field culture experiments and the mesocosm experiments in the East China Sea (ECS). The calculation comparisons from the proposed model, along with field experiment observations, show that the model simulate the datasets very well, qualitatively and quantitatively. The parameters’ sensitivity analysis indicates that the competition between the diatoms and dinoflagellates is most sensitive to the photosynthetic process, followed by the exudation process of the phytoplankton, while the autolysis and respiration processes of phytoplankton and the grazing and exudation processes of zooplankton can also influence this competition to some extent. The sensitive parameters include: the photosynthetic optimal specific rate; the optimal irradiance and optimal temperature for phytoplankton growth; and the half-saturation constant for limiting nutrients, etc. Results of the sensitivity analysis also indicate that light, temperature and limiting nutrients are the controlling environmental factors for the competition between the diatoms and dinoflagellates in the ECS. In order to explore the effects of light and nutrients on the phytoplankton competition, simulations were carried out with varying light and nutrient conditions. Model simulations suggest that the diatoms favor higher irradiance, lower DIN/PO4–P ratios, higher SiO4–Si/DIN ratios and higher nutrient concentrations, as compared to the dinoflagellates. These results support the speculation that the increase in the DIN/PO4−P ratio and the decrease in the SiO4–Si/DIN ratio in the ECS may be responsible for the composition change in the functional Harmful Algal Bloom (HAB) groups from the diatom to the dinoflagellate communities over the last two decades. More... »

PAGES

283-296

Journal

TITLE

Hydrobiologia

ISSUE

1

VOLUME

600

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10750-007-9241-8

DOI

http://dx.doi.org/10.1007/s10750-007-9241-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012653368


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China", 
            "College of Environment Science and Engineering, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanbin", 
        "id": "sg:person.01235416261.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235416261.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China", 
            "College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiulin", 
        "id": "sg:person.0577376104.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577376104.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China", 
            "College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Xiurong", 
        "id": "sg:person.010477221501.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477221501.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China", 
            "College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Keqiang", 
        "id": "sg:person.01206250344.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206250344.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China", 
            "College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xixi", 
        "id": "sg:person.013124176517.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013124176517.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China", 
            "College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Xiaoyong", 
        "id": "sg:person.01254363544.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254363544.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0399-1784(99)80013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000161028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002004141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002004141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csr.2003.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004234623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0645(00)00159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004540624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2000.45.3.0591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005557957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/18.10.1851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008178641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsr.2004.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009545006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2005.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009667527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-7963(97)00113-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010119473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecss.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010277930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2001.46.8.1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011355028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pocean.2007.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011549061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsr.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024194303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2003.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024202778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2004.49.4_part_2.1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027326422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jembe.2005.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028162705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-9883(03)00006-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032366261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-9883(03)00006-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032366261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hal.2004.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032455427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0645(02)00055-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033131023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1975.20.1.0150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037688812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1357/002224090784984678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038968794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/1352930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041034392", 
          "https://doi.org/10.2307/1352930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seares.2005.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041086849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seares.2005.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041086849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-0637(00)00005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041394070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00350071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041904247", 
          "https://doi.org/10.1007/bf00350071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00350071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041904247", 
          "https://doi.org/10.1007/bf00350071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(00)00219-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044237907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02850587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044252683", 
          "https://doi.org/10.1007/bf02850587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02850587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044252683", 
          "https://doi.org/10.1007/bf02850587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386385a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045787337", 
          "https://doi.org/10.1038/386385a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-7963(97)00025-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047196207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(99)00231-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048469534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0981(97)00254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051136378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1962.7.2.0137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051636039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps083281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071168394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps105203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071171289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps115309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071172611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps216067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071175904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps230047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071176263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076589082", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03", 
    "datePublishedReg": "2008-03-01", 
    "description": "An ecological dynamic model for the simulation of two pelagic phytoplankton groups is developed in this article. Model parameters were adjusted and validated based on the light-limited field culture experiments and the mesocosm experiments in the East China Sea (ECS). The calculation comparisons from the proposed model, along with field experiment observations, show that the model simulate the datasets very well, qualitatively and quantitatively. The parameters\u2019 sensitivity analysis indicates that the competition between the diatoms and dinoflagellates is most sensitive to the photosynthetic process, followed by the exudation process of the phytoplankton, while the autolysis and respiration processes of phytoplankton and the grazing and exudation processes of zooplankton can also influence this competition to some extent. The sensitive parameters include: the photosynthetic optimal specific rate; the optimal irradiance and optimal temperature for phytoplankton growth; and the half-saturation constant for limiting nutrients, etc. Results of the sensitivity analysis also indicate that light, temperature and limiting nutrients are the controlling environmental factors for the competition between the diatoms and dinoflagellates in the ECS. In order to explore the effects of light and nutrients on the phytoplankton competition, simulations were carried out with varying light and nutrient conditions. Model simulations suggest that the diatoms favor higher irradiance, lower DIN/PO4\u2013P ratios, higher SiO4\u2013Si/DIN ratios and higher nutrient concentrations, as compared to the dinoflagellates. These results support the speculation that the increase in the DIN/PO4\u2212P ratio and the decrease in the SiO4\u2013Si/DIN ratio in the ECS may be responsible for the composition change in the functional Harmful Algal Bloom (HAB) groups from the diatom to the dinoflagellate communities over the last two decades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10750-007-9241-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023171", 
        "issn": [
          "1037-0544", 
          "1573-8590"
        ], 
        "name": "Hydrobiologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "600"
      }
    ], 
    "name": "An ecosystem model of the phytoplankton competition in the East China Sea, as based on field experiments", 
    "pagination": "283-296", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10750-007-9241-8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c484811b9e1c419e39716a93afea489551beba0ddfb895c257a22b07e18751d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012653368"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10750-007-9241-8", 
      "https://app.dimensions.ai/details/publication/pub.1012653368"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56193_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10750-007-9241-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10750-007-9241-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10750-007-9241-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10750-007-9241-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10750-007-9241-8'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10750-007-9241-8 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Nf137841fb17a45dab47e95e799298854
4 schema:citation sg:pub.10.1007/bf00350071
5 sg:pub.10.1007/bf02850587
6 sg:pub.10.1038/386385a0
7 sg:pub.10.2307/1352930
8 https://app.dimensions.ai/details/publication/pub.1076589082
9 https://doi.org/10.1016/j.csr.2003.09.007
10 https://doi.org/10.1016/j.dsr.2003.08.003
11 https://doi.org/10.1016/j.dsr.2004.07.003
12 https://doi.org/10.1016/j.ecolmodel.2003.08.011
13 https://doi.org/10.1016/j.ecolmodel.2005.01.040
14 https://doi.org/10.1016/j.ecss.2006.05.010
15 https://doi.org/10.1016/j.hal.2004.08.015
16 https://doi.org/10.1016/j.jembe.2005.05.006
17 https://doi.org/10.1016/j.pocean.2007.04.019
18 https://doi.org/10.1016/j.seares.2005.02.009
19 https://doi.org/10.1016/j.watres.2003.12.030
20 https://doi.org/10.1016/s0022-0981(97)00254-2
21 https://doi.org/10.1016/s0304-3800(00)00219-2
22 https://doi.org/10.1016/s0304-3800(99)00231-8
23 https://doi.org/10.1016/s0399-1784(99)80013-9
24 https://doi.org/10.1016/s0924-7963(97)00025-0
25 https://doi.org/10.1016/s0924-7963(97)00113-9
26 https://doi.org/10.1016/s0967-0637(00)00005-4
27 https://doi.org/10.1016/s0967-0645(00)00159-4
28 https://doi.org/10.1016/s0967-0645(02)00055-3
29 https://doi.org/10.1016/s1568-9883(03)00006-4
30 https://doi.org/10.1093/plankt/18.10.1851
31 https://doi.org/10.1357/002224090784984678
32 https://doi.org/10.3354/meps083281
33 https://doi.org/10.3354/meps105203
34 https://doi.org/10.3354/meps115309
35 https://doi.org/10.3354/meps216067
36 https://doi.org/10.3354/meps230047
37 https://doi.org/10.4319/lo.1962.7.2.0137
38 https://doi.org/10.4319/lo.1975.20.1.0150
39 https://doi.org/10.4319/lo.2000.45.3.0591
40 https://doi.org/10.4319/lo.2001.46.8.1990
41 https://doi.org/10.4319/lo.2004.49.4_part_2.1424
42 schema:datePublished 2008-03
43 schema:datePublishedReg 2008-03-01
44 schema:description An ecological dynamic model for the simulation of two pelagic phytoplankton groups is developed in this article. Model parameters were adjusted and validated based on the light-limited field culture experiments and the mesocosm experiments in the East China Sea (ECS). The calculation comparisons from the proposed model, along with field experiment observations, show that the model simulate the datasets very well, qualitatively and quantitatively. The parameters’ sensitivity analysis indicates that the competition between the diatoms and dinoflagellates is most sensitive to the photosynthetic process, followed by the exudation process of the phytoplankton, while the autolysis and respiration processes of phytoplankton and the grazing and exudation processes of zooplankton can also influence this competition to some extent. The sensitive parameters include: the photosynthetic optimal specific rate; the optimal irradiance and optimal temperature for phytoplankton growth; and the half-saturation constant for limiting nutrients, etc. Results of the sensitivity analysis also indicate that light, temperature and limiting nutrients are the controlling environmental factors for the competition between the diatoms and dinoflagellates in the ECS. In order to explore the effects of light and nutrients on the phytoplankton competition, simulations were carried out with varying light and nutrient conditions. Model simulations suggest that the diatoms favor higher irradiance, lower DIN/PO4–P ratios, higher SiO4–Si/DIN ratios and higher nutrient concentrations, as compared to the dinoflagellates. These results support the speculation that the increase in the DIN/PO4−P ratio and the decrease in the SiO4–Si/DIN ratio in the ECS may be responsible for the composition change in the functional Harmful Algal Bloom (HAB) groups from the diatom to the dinoflagellate communities over the last two decades.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N87e7bd764bfe4074a6581be2c0a5c434
49 Nd2c08bd5ae3145619c5c41717f5a816f
50 sg:journal.1023171
51 schema:name An ecosystem model of the phytoplankton competition in the East China Sea, as based on field experiments
52 schema:pagination 283-296
53 schema:productId N769657466b344950a9549bf8d6cb8243
54 Na3ef1f04123d462a80d69f9c7c5a3a28
55 Nf5bccf590a6c4181b5fb3619ebf64fd8
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012653368
57 https://doi.org/10.1007/s10750-007-9241-8
58 schema:sdDatePublished 2019-04-15T09:26
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N56db5816ce9646258a3853523a344b65
61 schema:url http://link.springer.com/10.1007%2Fs10750-007-9241-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N27a434c96c4c43129620e9ce54383519 rdf:first sg:person.010477221501.35
66 rdf:rest N9b2409c915f0431e9db6ad48591c5c4c
67 N56db5816ce9646258a3853523a344b65 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N769657466b344950a9549bf8d6cb8243 schema:name doi
70 schema:value 10.1007/s10750-007-9241-8
71 rdf:type schema:PropertyValue
72 N87e7bd764bfe4074a6581be2c0a5c434 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N9b2409c915f0431e9db6ad48591c5c4c rdf:first sg:person.01206250344.47
75 rdf:rest N9d633da4c1fc487b9844b11492229f1f
76 N9d633da4c1fc487b9844b11492229f1f rdf:first sg:person.013124176517.75
77 rdf:rest Nf18456a9ce6b4644883bb0460565fd37
78 Na3ef1f04123d462a80d69f9c7c5a3a28 schema:name dimensions_id
79 schema:value pub.1012653368
80 rdf:type schema:PropertyValue
81 Nd2c08bd5ae3145619c5c41717f5a816f schema:volumeNumber 600
82 rdf:type schema:PublicationVolume
83 Nf137841fb17a45dab47e95e799298854 rdf:first sg:person.01235416261.10
84 rdf:rest Nf9eb565e238a433a80a313cca6b48b77
85 Nf18456a9ce6b4644883bb0460565fd37 rdf:first sg:person.01254363544.21
86 rdf:rest rdf:nil
87 Nf5bccf590a6c4181b5fb3619ebf64fd8 schema:name readcube_id
88 schema:value 3c484811b9e1c419e39716a93afea489551beba0ddfb895c257a22b07e18751d
89 rdf:type schema:PropertyValue
90 Nf9eb565e238a433a80a313cca6b48b77 rdf:first sg:person.0577376104.41
91 rdf:rest N27a434c96c4c43129620e9ce54383519
92 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
93 schema:name Biological Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
96 schema:name Ecology
97 rdf:type schema:DefinedTerm
98 sg:journal.1023171 schema:issn 1037-0544
99 1573-8590
100 schema:name Hydrobiologia
101 rdf:type schema:Periodical
102 sg:person.010477221501.35 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
103 schema:familyName Han
104 schema:givenName Xiurong
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477221501.35
106 rdf:type schema:Person
107 sg:person.01206250344.47 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
108 schema:familyName Li
109 schema:givenName Keqiang
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206250344.47
111 rdf:type schema:Person
112 sg:person.01235416261.10 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
113 schema:familyName Li
114 schema:givenName Yanbin
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235416261.10
116 rdf:type schema:Person
117 sg:person.01254363544.21 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
118 schema:familyName Shi
119 schema:givenName Xiaoyong
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254363544.21
121 rdf:type schema:Person
122 sg:person.013124176517.75 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
123 schema:familyName Zhao
124 schema:givenName Xixi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013124176517.75
126 rdf:type schema:Person
127 sg:person.0577376104.41 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
128 schema:familyName Wang
129 schema:givenName Xiulin
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577376104.41
131 rdf:type schema:Person
132 sg:pub.10.1007/bf00350071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041904247
133 https://doi.org/10.1007/bf00350071
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02850587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044252683
136 https://doi.org/10.1007/bf02850587
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/386385a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045787337
139 https://doi.org/10.1038/386385a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.2307/1352930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041034392
142 https://doi.org/10.2307/1352930
143 rdf:type schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1076589082 schema:CreativeWork
145 https://doi.org/10.1016/j.csr.2003.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004234623
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.dsr.2003.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024194303
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.dsr.2004.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009545006
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ecolmodel.2003.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002004141
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ecolmodel.2005.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009667527
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ecss.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010277930
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.hal.2004.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032455427
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jembe.2005.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028162705
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.pocean.2007.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011549061
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.seares.2005.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041086849
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.watres.2003.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024202778
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0022-0981(97)00254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051136378
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0304-3800(00)00219-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044237907
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0304-3800(99)00231-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048469534
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0399-1784(99)80013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000161028
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0924-7963(97)00025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047196207
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0924-7963(97)00113-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010119473
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0967-0637(00)00005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041394070
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0967-0645(00)00159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004540624
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0967-0645(02)00055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033131023
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s1568-9883(03)00006-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032366261
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/plankt/18.10.1851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008178641
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1357/002224090784984678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038968794
190 rdf:type schema:CreativeWork
191 https://doi.org/10.3354/meps083281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071168394
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3354/meps105203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071171289
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3354/meps115309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071172611
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3354/meps216067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071175904
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3354/meps230047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071176263
200 rdf:type schema:CreativeWork
201 https://doi.org/10.4319/lo.1962.7.2.0137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051636039
202 rdf:type schema:CreativeWork
203 https://doi.org/10.4319/lo.1975.20.1.0150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037688812
204 rdf:type schema:CreativeWork
205 https://doi.org/10.4319/lo.2000.45.3.0591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005557957
206 rdf:type schema:CreativeWork
207 https://doi.org/10.4319/lo.2001.46.8.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011355028
208 rdf:type schema:CreativeWork
209 https://doi.org/10.4319/lo.2004.49.4_part_2.1424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027326422
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.4422.0 schema:alternateName Ocean University of China
212 schema:name College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, China
213 College of Environment Science and Engineering, Ocean University of China, 266100, Qingdao, China
214 Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...