Analysis of nonlinear heat conduction based on determining the front of temperature perturbation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

V. A. Kudinov, B. V. Averin, E. V. Stefanyuk, S. A. Nazarenko

ABSTRACT

An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem. More... »

PAGES

574-583

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6

DOI

http://dx.doi.org/10.1007/s10740-006-0071-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012563250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Averin", 
        "givenName": "B. V.", 
        "id": "sg:person.012142350601.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142350601.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "S. A.", 
        "id": "sg:person.015130252601.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10740-006-0071-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135875", 
        "issn": [
          "0018-151X", 
          "0040-3644"
        ], 
        "name": "High Temperature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "heat conduction", 
      "boundary conditions", 
      "additional boundary conditions", 
      "accuracy of solutions", 
      "nonlinear heat conduction", 
      "temperature perturbations", 
      "heat balance", 
      "analytical solution", 
      "integral method", 
      "temperature function", 
      "basic differential equations", 
      "nonlinear problems", 
      "conduction", 
      "front", 
      "solution", 
      "second approximation", 
      "conditions", 
      "accuracy", 
      "differential equations", 
      "polynomial coefficients", 
      "coefficient", 
      "equations", 
      "high degree", 
      "problem", 
      "order", 
      "perturbations", 
      "method", 
      "approximation", 
      "increase", 
      "balance", 
      "analysis", 
      "degree", 
      "introduction", 
      "function", 
      "significant increase", 
      "polynomials"
    ], 
    "name": "Analysis of nonlinear heat conduction based on determining the front of temperature perturbation", 
    "pagination": "574-583", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012563250"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10740-006-0071-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10740-006-0071-6", 
      "https://app.dimensions.ai/details/publication/pub.1012563250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_420.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10740-006-0071-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      62 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10740-006-0071-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N78081948fd7440efb3ec13343f9f2796
4 schema:datePublished 2006-07
5 schema:datePublishedReg 2006-07-01
6 schema:description An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nd61cb90e69394fd585164eecd0a8bbac
11 Ne3cb2c077b814c2fae9f1dfb7b01cdba
12 sg:journal.1135875
13 schema:keywords accuracy
14 accuracy of solutions
15 additional boundary conditions
16 analysis
17 analytical solution
18 approximation
19 balance
20 basic differential equations
21 boundary conditions
22 coefficient
23 conditions
24 conduction
25 degree
26 differential equations
27 equations
28 front
29 function
30 heat balance
31 heat conduction
32 high degree
33 increase
34 integral method
35 introduction
36 method
37 nonlinear heat conduction
38 nonlinear problems
39 order
40 perturbations
41 polynomial coefficients
42 polynomials
43 problem
44 second approximation
45 significant increase
46 solution
47 temperature function
48 temperature perturbations
49 schema:name Analysis of nonlinear heat conduction based on determining the front of temperature perturbation
50 schema:pagination 574-583
51 schema:productId N654afd69f5ea4c959d86b6281f778a84
52 N953b2474f04d448e8a36f7f561dc1335
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012563250
54 https://doi.org/10.1007/s10740-006-0071-6
55 schema:sdDatePublished 2021-11-01T18:09
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nb9b795fd85ca48e3a5b4473b528212e5
58 schema:url https://doi.org/10.1007/s10740-006-0071-6
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N654afd69f5ea4c959d86b6281f778a84 schema:name doi
63 schema:value 10.1007/s10740-006-0071-6
64 rdf:type schema:PropertyValue
65 N78081948fd7440efb3ec13343f9f2796 rdf:first sg:person.014602635070.00
66 rdf:rest N9e114991ddb64bd688b1d74dbd78b6d9
67 N953b2474f04d448e8a36f7f561dc1335 schema:name dimensions_id
68 schema:value pub.1012563250
69 rdf:type schema:PropertyValue
70 N9e114991ddb64bd688b1d74dbd78b6d9 rdf:first sg:person.012142350601.09
71 rdf:rest Nbb78ecb76c0b414fac345313ff89263b
72 Nb9b795fd85ca48e3a5b4473b528212e5 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nbb78ecb76c0b414fac345313ff89263b rdf:first sg:person.010637046537.80
75 rdf:rest Nc55cf28f846545f89695c8e9805d91ce
76 Nc55cf28f846545f89695c8e9805d91ce rdf:first sg:person.015130252601.62
77 rdf:rest rdf:nil
78 Nd61cb90e69394fd585164eecd0a8bbac schema:issueNumber 4
79 rdf:type schema:PublicationIssue
80 Ne3cb2c077b814c2fae9f1dfb7b01cdba schema:volumeNumber 44
81 rdf:type schema:PublicationVolume
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
87 rdf:type schema:DefinedTerm
88 sg:journal.1135875 schema:issn 0018-151X
89 0040-3644
90 schema:name High Temperature
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.010637046537.80 schema:affiliation grid-institutes:grid.445792.9
94 schema:familyName Stefanyuk
95 schema:givenName E. V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
97 rdf:type schema:Person
98 sg:person.012142350601.09 schema:affiliation grid-institutes:grid.445792.9
99 schema:familyName Averin
100 schema:givenName B. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142350601.09
102 rdf:type schema:Person
103 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
104 schema:familyName Kudinov
105 schema:givenName V. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
107 rdf:type schema:Person
108 sg:person.015130252601.62 schema:affiliation grid-institutes:grid.445792.9
109 schema:familyName Nazarenko
110 schema:givenName S. A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62
112 rdf:type schema:Person
113 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, Samara, Russia
114 schema:name Samara State Technical University, Samara, Russia
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...