Analysis of nonlinear heat conduction based on determining the front of temperature perturbation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

V. A. Kudinov, B. V. Averin, E. V. Stefanyuk, S. A. Nazarenko

ABSTRACT

An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem. More... »

PAGES

574-583

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6

DOI

http://dx.doi.org/10.1007/s10740-006-0071-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012563250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Averin", 
        "givenName": "B. V.", 
        "id": "sg:person.012142350601.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142350601.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "S. A.", 
        "id": "sg:person.015130252601.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10740-006-0071-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135875", 
        "issn": [
          "0018-151X", 
          "0040-3644"
        ], 
        "name": "High Temperature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "heat conduction", 
      "boundary conditions", 
      "additional boundary conditions", 
      "accuracy of solutions", 
      "nonlinear heat conduction", 
      "temperature perturbations", 
      "heat balance", 
      "analytical solution", 
      "integral method", 
      "temperature function", 
      "basic differential equations", 
      "nonlinear problems", 
      "conduction", 
      "front", 
      "solution", 
      "second approximation", 
      "conditions", 
      "accuracy", 
      "differential equations", 
      "polynomial coefficients", 
      "coefficient", 
      "equations", 
      "high degree", 
      "problem", 
      "order", 
      "perturbations", 
      "method", 
      "approximation", 
      "increase", 
      "balance", 
      "analysis", 
      "degree", 
      "introduction", 
      "function", 
      "significant increase", 
      "polynomials"
    ], 
    "name": "Analysis of nonlinear heat conduction based on determining the front of temperature perturbation", 
    "pagination": "574-583", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012563250"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10740-006-0071-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10740-006-0071-6", 
      "https://app.dimensions.ai/details/publication/pub.1012563250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_431.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10740-006-0071-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10740-006-0071-6'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      62 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10740-006-0071-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc8b1c3f4c5f44bc08dbfeb42b12b7d71
4 schema:datePublished 2006-07
5 schema:datePublishedReg 2006-07-01
6 schema:description An analytical solution of nonlinear problem of heat conduction is derived using an integral method of heat balance. In order to improve the accuracy of solution, the temperature function is approximated by polynomials of higher degrees. The polynomial coefficients are determined using additional boundary conditions which are found from the basic differential equation and preassigned boundary conditions including the conditions on the front of temperature perturbation. It is demonstrated that the introduction of additional boundary conditions even in a second approximation results in a significant increase in the accuracy of solution of the problem.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N8f391c3726a848d7bfbcb927eb7870f1
11 Nd3379267138747408ae2adb15457f6fb
12 sg:journal.1135875
13 schema:keywords accuracy
14 accuracy of solutions
15 additional boundary conditions
16 analysis
17 analytical solution
18 approximation
19 balance
20 basic differential equations
21 boundary conditions
22 coefficient
23 conditions
24 conduction
25 degree
26 differential equations
27 equations
28 front
29 function
30 heat balance
31 heat conduction
32 high degree
33 increase
34 integral method
35 introduction
36 method
37 nonlinear heat conduction
38 nonlinear problems
39 order
40 perturbations
41 polynomial coefficients
42 polynomials
43 problem
44 second approximation
45 significant increase
46 solution
47 temperature function
48 temperature perturbations
49 schema:name Analysis of nonlinear heat conduction based on determining the front of temperature perturbation
50 schema:pagination 574-583
51 schema:productId N457bdcef119548798f74783cce29b4f4
52 N64556a711a2941af897cd56e3f851920
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012563250
54 https://doi.org/10.1007/s10740-006-0071-6
55 schema:sdDatePublished 2022-01-01T18:16
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N11c9b2926c374dc4af3ae468db2c0daa
58 schema:url https://doi.org/10.1007/s10740-006-0071-6
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N11c9b2926c374dc4af3ae468db2c0daa schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N14e363f3eb164eafaf810e0b0835ac10 rdf:first sg:person.012142350601.09
65 rdf:rest Nb7f668972860446f95031e81d21a8e99
66 N457bdcef119548798f74783cce29b4f4 schema:name doi
67 schema:value 10.1007/s10740-006-0071-6
68 rdf:type schema:PropertyValue
69 N64556a711a2941af897cd56e3f851920 schema:name dimensions_id
70 schema:value pub.1012563250
71 rdf:type schema:PropertyValue
72 N718a79d2c32449e08bce8a29e92d0617 rdf:first sg:person.015130252601.62
73 rdf:rest rdf:nil
74 N8f391c3726a848d7bfbcb927eb7870f1 schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 Nb7f668972860446f95031e81d21a8e99 rdf:first sg:person.010637046537.80
77 rdf:rest N718a79d2c32449e08bce8a29e92d0617
78 Nc8b1c3f4c5f44bc08dbfeb42b12b7d71 rdf:first sg:person.014602635070.00
79 rdf:rest N14e363f3eb164eafaf810e0b0835ac10
80 Nd3379267138747408ae2adb15457f6fb schema:volumeNumber 44
81 rdf:type schema:PublicationVolume
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
87 rdf:type schema:DefinedTerm
88 sg:journal.1135875 schema:issn 0018-151X
89 0040-3644
90 schema:name High Temperature
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.010637046537.80 schema:affiliation grid-institutes:grid.445792.9
94 schema:familyName Stefanyuk
95 schema:givenName E. V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
97 rdf:type schema:Person
98 sg:person.012142350601.09 schema:affiliation grid-institutes:grid.445792.9
99 schema:familyName Averin
100 schema:givenName B. V.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142350601.09
102 rdf:type schema:Person
103 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
104 schema:familyName Kudinov
105 schema:givenName V. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
107 rdf:type schema:Person
108 sg:person.015130252601.62 schema:affiliation grid-institutes:grid.445792.9
109 schema:familyName Nazarenko
110 schema:givenName S. A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130252601.62
112 rdf:type schema:Person
113 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, Samara, Russia
114 schema:name Samara State Technical University, Samara, Russia
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...