Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09-08

AUTHORS

Hiroyuki Sato

ABSTRACT

MOEA/D is one of the promising evolutionary approaches for solving multi and many-objective optimization problems. MOEA/D decomposes a multi-objective optimization problem into a number of single objective optimization problems. Each single objective optimization problem is defined by a scalarizing function using a weight vector. In MOEA/D, there are several scalarizing approaches such as weighted Tchebycheff, reciprocal weighted Tchebycheff, weighted sum (WS) and penalty-based boundary intersection (PBI). Each scalarizing function has a characteristic effect on the search performance of MOEA/D and provides a scenario of multi-objective solution search. To improve the availability of MOEA/D framework for solving various kinds of problems, it is important to provide a new scalarizing function which has different characteristics from the conventional scalarizing functions. In particular, the conventional scalarizing approaches face a difficulty to approximate a widely spread Pareto front in some problems. To approximate the entire Pareto front by improving the spread of solutions in the objective space and enhance the search performance of MOEA/D in multi and many-objective optimization problems, in this work we propose the inverted PBI scalarizing approach which is an extension of the conventional PBI and WS. In this work, we analyze differences between inverted PBI and other scalarizing functions, and compare the search performances of NSGA-III and five MOEA/Ds using weighted Tchebycheff, reciprocal weighted Tchebycheff, WS, PBI and inverted PBI in many-objective knapsack problems and WFG4 problems with 2–8 objectives. As results, we show that the inverted PBI based MOEA/D achieves higher search performance than other algorithms in problems with many-objectives and the difficulty to approximate a widely spread Pareto front in the objective space. Also, we show the robustness of the inverted PBI on Pareto front geometry by using problems with four representative concave, linear, convex and discontinuous Pareto fronts. More... »

PAGES

819-849

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10732-015-9301-6

DOI

http://dx.doi.org/10.1007/s10732-015-9301-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004134898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-30217-9_84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006836276", 
          "https://doi.org/10.1007/978-3-540-30217-9_84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01020-0_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026909380", 
          "https://doi.org/10.1007/978-3-642-01020-0_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37140-0_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010033765", 
          "https://doi.org/10.1007/978-3-642-37140-0_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17298-4_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007645883", 
          "https://doi.org/10.1007/978-3-642-17298-4_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70928-2_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024882773", 
          "https://doi.org/10.1007/978-3-540-70928-2_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-44973-4_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962171", 
          "https://doi.org/10.1007/978-3-642-44973-4_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14156-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028142637", 
          "https://doi.org/10.1007/978-3-642-14156-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-87563-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391184", 
          "https://doi.org/10.1007/978-3-642-87563-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11844297_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002020571", 
          "https://doi.org/10.1007/11844297_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15871-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016672267", 
          "https://doi.org/10.1007/978-3-642-15871-1_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-08", 
    "datePublishedReg": "2015-09-08", 
    "description": "MOEA/D is one of the promising evolutionary approaches for solving multi and many-objective optimization problems. MOEA/D decomposes a multi-objective optimization problem into a number of single objective optimization problems. Each single objective optimization problem is defined by a scalarizing function using a weight vector. In MOEA/D, there are several scalarizing approaches such as weighted Tchebycheff, reciprocal weighted Tchebycheff, weighted sum (WS) and penalty-based boundary intersection (PBI). Each scalarizing function has a characteristic effect on the search performance of MOEA/D and provides a scenario of multi-objective solution search. To improve the availability of MOEA/D framework for solving various kinds of problems, it is important to provide a new scalarizing function which has different characteristics from the conventional scalarizing functions. In particular, the conventional scalarizing approaches face a difficulty to approximate a widely spread Pareto front in some problems. To approximate the entire Pareto front by improving the spread of solutions in the objective space and enhance the search performance of MOEA/D in multi and many-objective optimization problems, in this work we propose the inverted PBI scalarizing approach which is an extension of the conventional PBI and WS. In this work, we analyze differences between inverted PBI and other scalarizing functions, and compare the search performances of NSGA-III and five MOEA/Ds using weighted Tchebycheff, reciprocal weighted Tchebycheff, WS, PBI and inverted PBI in many-objective knapsack problems and WFG4 problems with 2\u20138 objectives. As results, we show that the inverted PBI based MOEA/D achieves higher search performance than other algorithms in problems with many-objectives and the difficulty to approximate a widely spread Pareto front in the objective space. Also, we show the robustness of the inverted PBI on Pareto front geometry by using problems with four representative concave, linear, convex and discontinuous Pareto fronts.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10732-015-9301-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6155136", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136112", 
        "issn": [
          "1381-1231", 
          "1572-9397"
        ], 
        "name": "Journal of Heuristics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "objective optimization problems", 
      "MOEA/D", 
      "penalty-based boundary intersection", 
      "single-objective optimization problem", 
      "optimization problem", 
      "Pareto front", 
      "objective space", 
      "Pareto front geometry", 
      "multi-objective optimization problem", 
      "MOEA/D framework", 
      "entire Pareto front", 
      "objective knapsack problems", 
      "discontinuous Pareto fronts", 
      "spread of solutions", 
      "high search performance", 
      "scalarizing functions", 
      "NSGA-III", 
      "kind of problem", 
      "MOEA/Ds", 
      "boundary intersection", 
      "solution search", 
      "knapsack problem", 
      "search performance", 
      "Tchebycheff", 
      "front geometry", 
      "weight vector", 
      "problem", 
      "evolutionary approach", 
      "space", 
      "MOEA", 
      "convex", 
      "function", 
      "geometry", 
      "front", 
      "approach", 
      "algorithm", 
      "robustness", 
      "sum", 
      "solution", 
      "performance", 
      "extension", 
      "concave", 
      "vector", 
      "decomposition", 
      "framework", 
      "work", 
      "different characteristics", 
      "intersection", 
      "difficulties", 
      "scenarios", 
      "number", 
      "kind", 
      "characteristic effects", 
      "objective", 
      "search", 
      "results", 
      "comparison", 
      "analysis", 
      "spread", 
      "WS", 
      "characteristics", 
      "DS", 
      "effect", 
      "availability", 
      "differences"
    ], 
    "name": "Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs", 
    "pagination": "819-849", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004134898"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10732-015-9301-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10732-015-9301-6", 
      "https://app.dimensions.ai/details/publication/pub.1004134898"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_673.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10732-015-9301-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10732-015-9301-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10732-015-9301-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10732-015-9301-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10732-015-9301-6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      22 PREDICATES      100 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10732-015-9301-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N90d9de3e41904a829631ee03d7643105
4 schema:citation sg:pub.10.1007/11844297_54
5 sg:pub.10.1007/978-3-540-30217-9_84
6 sg:pub.10.1007/978-3-540-70928-2_8
7 sg:pub.10.1007/978-3-642-01020-0_35
8 sg:pub.10.1007/978-3-642-14156-0_13
9 sg:pub.10.1007/978-3-642-15871-1_1
10 sg:pub.10.1007/978-3-642-17298-4_49
11 sg:pub.10.1007/978-3-642-37140-0_26
12 sg:pub.10.1007/978-3-642-44973-4_24
13 sg:pub.10.1007/978-3-642-87563-2_5
14 schema:datePublished 2015-09-08
15 schema:datePublishedReg 2015-09-08
16 schema:description MOEA/D is one of the promising evolutionary approaches for solving multi and many-objective optimization problems. MOEA/D decomposes a multi-objective optimization problem into a number of single objective optimization problems. Each single objective optimization problem is defined by a scalarizing function using a weight vector. In MOEA/D, there are several scalarizing approaches such as weighted Tchebycheff, reciprocal weighted Tchebycheff, weighted sum (WS) and penalty-based boundary intersection (PBI). Each scalarizing function has a characteristic effect on the search performance of MOEA/D and provides a scenario of multi-objective solution search. To improve the availability of MOEA/D framework for solving various kinds of problems, it is important to provide a new scalarizing function which has different characteristics from the conventional scalarizing functions. In particular, the conventional scalarizing approaches face a difficulty to approximate a widely spread Pareto front in some problems. To approximate the entire Pareto front by improving the spread of solutions in the objective space and enhance the search performance of MOEA/D in multi and many-objective optimization problems, in this work we propose the inverted PBI scalarizing approach which is an extension of the conventional PBI and WS. In this work, we analyze differences between inverted PBI and other scalarizing functions, and compare the search performances of NSGA-III and five MOEA/Ds using weighted Tchebycheff, reciprocal weighted Tchebycheff, WS, PBI and inverted PBI in many-objective knapsack problems and WFG4 problems with 2–8 objectives. As results, we show that the inverted PBI based MOEA/D achieves higher search performance than other algorithms in problems with many-objectives and the difficulty to approximate a widely spread Pareto front in the objective space. Also, we show the robustness of the inverted PBI on Pareto front geometry by using problems with four representative concave, linear, convex and discontinuous Pareto fronts.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N0f9ebc12a6e84e3197284a71652503f7
21 N2cab81ead6554de193ed62c3e1af4806
22 sg:journal.1136112
23 schema:keywords DS
24 MOEA
25 MOEA/D
26 MOEA/D framework
27 MOEA/Ds
28 NSGA-III
29 Pareto front
30 Pareto front geometry
31 Tchebycheff
32 WS
33 algorithm
34 analysis
35 approach
36 availability
37 boundary intersection
38 characteristic effects
39 characteristics
40 comparison
41 concave
42 convex
43 decomposition
44 differences
45 different characteristics
46 difficulties
47 discontinuous Pareto fronts
48 effect
49 entire Pareto front
50 evolutionary approach
51 extension
52 framework
53 front
54 front geometry
55 function
56 geometry
57 high search performance
58 intersection
59 kind
60 kind of problem
61 knapsack problem
62 multi-objective optimization problem
63 number
64 objective
65 objective knapsack problems
66 objective optimization problems
67 objective space
68 optimization problem
69 penalty-based boundary intersection
70 performance
71 problem
72 results
73 robustness
74 scalarizing functions
75 scenarios
76 search
77 search performance
78 single-objective optimization problem
79 solution
80 solution search
81 space
82 spread
83 spread of solutions
84 sum
85 vector
86 weight vector
87 work
88 schema:name Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs
89 schema:pagination 819-849
90 schema:productId N6ab2e1812e6d4e02a7468ef6847b9c26
91 N6fe725f5784d469887817e1eadd34329
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004134898
93 https://doi.org/10.1007/s10732-015-9301-6
94 schema:sdDatePublished 2022-05-10T10:14
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N01a79b97879e4df19c61ef6525647b6c
97 schema:url https://doi.org/10.1007/s10732-015-9301-6
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N01a79b97879e4df19c61ef6525647b6c schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N0f9ebc12a6e84e3197284a71652503f7 schema:volumeNumber 21
104 rdf:type schema:PublicationVolume
105 N2cab81ead6554de193ed62c3e1af4806 schema:issueNumber 6
106 rdf:type schema:PublicationIssue
107 N6ab2e1812e6d4e02a7468ef6847b9c26 schema:name doi
108 schema:value 10.1007/s10732-015-9301-6
109 rdf:type schema:PropertyValue
110 N6fe725f5784d469887817e1eadd34329 schema:name dimensions_id
111 schema:value pub.1004134898
112 rdf:type schema:PropertyValue
113 N90d9de3e41904a829631ee03d7643105 rdf:first sg:person.07750750604.05
114 rdf:rest rdf:nil
115 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
116 schema:name Mathematical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
119 schema:name Numerical and Computational Mathematics
120 rdf:type schema:DefinedTerm
121 sg:grant.6155136 http://pending.schema.org/fundedItem sg:pub.10.1007/s10732-015-9301-6
122 rdf:type schema:MonetaryGrant
123 sg:journal.1136112 schema:issn 1381-1231
124 1572-9397
125 schema:name Journal of Heuristics
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
129 schema:familyName Sato
130 schema:givenName Hiroyuki
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
132 rdf:type schema:Person
133 sg:pub.10.1007/11844297_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002020571
134 https://doi.org/10.1007/11844297_54
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-540-30217-9_84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006836276
137 https://doi.org/10.1007/978-3-540-30217-9_84
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-540-70928-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882773
140 https://doi.org/10.1007/978-3-540-70928-2_8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-642-01020-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026909380
143 https://doi.org/10.1007/978-3-642-01020-0_35
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-642-14156-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028142637
146 https://doi.org/10.1007/978-3-642-14156-0_13
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-642-15871-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016672267
149 https://doi.org/10.1007/978-3-642-15871-1_1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-642-17298-4_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007645883
152 https://doi.org/10.1007/978-3-642-17298-4_49
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-642-37140-0_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010033765
155 https://doi.org/10.1007/978-3-642-37140-0_26
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-3-642-44973-4_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013962171
158 https://doi.org/10.1007/978-3-642-44973-4_24
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-3-642-87563-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029391184
161 https://doi.org/10.1007/978-3-642-87563-2_5
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.266298.1 schema:alternateName Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
164 schema:name Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...