Data-driven optimization methodology for admission control in critical care units View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03-13

AUTHORS

Amirhossein Meisami, Jivan Deglise-Hawkinson, Mark E. Cowen, Mark P. Van Oyen

ABSTRACT

The decision of whether to admit a patient to a critical care unit is a crucial operational problem that has significant influence on both hospital performance and patient outcomes. Hospitals currently lack a methodology to selectively admit patients to these units in a way that patient health risk metrics can be incorporated while considering the congestion that will occur. The hospital is modeled as a complex loss queueing network with a stochastic model of how long risk-stratified patients spend time in particular units and how they transition between units. A Mixed Integer Programming model approximates an optimal admission control policy for the network of units. While enforcing low levels of patient blocking, we optimize a monotonic dual-threshold admission policy. A hospital network including Intermediate Care Units (IMCs) and Intensive Care Units (ICUs) was considered for validation. The optimized model indicated a reduction in the risk levels required for admission, and weekly average admissions to ICUs and IMCs increased by 37% and 12%, respectively, with minimal blocking. Our methodology captures utilization and accessibility in a network model of care pathways while supporting the personalized allocation of scarce care resources to the neediest patients. The interesting benefits of admission thresholds that vary by day of week are studied. More... »

PAGES

1-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10729-018-9439-5

DOI

http://dx.doi.org/10.1007/s10729-018-9439-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101517811

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29536293


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meisami", 
        "givenName": "Amirhossein", 
        "id": "sg:person.015600454634.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015600454634.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lean Care Solutions Corp, Bloomington, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deglise-Hawkinson", 
        "givenName": "Jivan", 
        "id": "sg:person.012163705411.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163705411.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Joseph Mercy Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416444.7", 
          "name": [
            "Center for Healthcare Analytics and Performance Improvement, St. Joseph Mercy Hospital, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cowen", 
        "givenName": "Mark E.", 
        "id": "sg:person.01205145052.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205145052.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Oyen", 
        "givenName": "Mark P.", 
        "id": "sg:person.010573114213.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573114213.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jhm.817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266462305050087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006631584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcc.0b013e328332f54f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006743906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcc.0b013e328332f54f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006743906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcc.0b013e328332f54f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006743906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcc.0b013e328332f54f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006743906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000299738.26888.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009039750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000299738.26888.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009039750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2011.2315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011375904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrc.2009.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016581309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0740817x.2014.955151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020621853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2012.2606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021719266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.158.10.1144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022046595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2013.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022314068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1513/annalsats.201409-419oc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023808185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1937-5956.2011.01231.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024656162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jhm.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028278131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjsurg.2013.08.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029933922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200306000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030445142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000542-200306000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030445142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5034/inquiryjrnl_39.4.400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036155461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5034/inquiryjrnl_39.4.400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036155461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-010-1933-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037710572", 
          "https://doi.org/10.1007/s00134-010-1933-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-010-1933-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037710572", 
          "https://doi.org/10.1007/s00134-010-1933-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.288.16.1987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040895097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e3182374828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043210630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e3182374828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043210630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jhm.2250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000266585.74905.5a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044369886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000266585.74905.5a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044369886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024457800682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046669184", 
          "https://doi.org/10.1023/a:1024457800682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000130175.38521.9f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048269982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000130175.38521.9f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048269982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000253407.89594.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050374829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ccm.0000253407.89594.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050374829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e3181b090d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050677378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ccm.0b013e3181b090d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050677378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11606-016-3654-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052812554", 
          "https://doi.org/10.1007/s11606-016-3654-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199903000-00048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060173955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199903000-00048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060173955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003246-199903000-00048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060173955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219622002000439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063000680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.2014.2057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064717793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/msom.1110.0341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064725043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1120.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.2014.1317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064728019"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03-13", 
    "datePublishedReg": "2018-03-13", 
    "description": "The decision of whether to admit a patient to a critical care unit is a crucial operational problem that has significant influence on both hospital performance and patient outcomes. Hospitals currently lack a methodology to selectively admit patients to these units in a way that patient health risk metrics can be incorporated while considering the congestion that will occur. The hospital is modeled as a complex loss queueing network with a stochastic model of how long risk-stratified patients spend time in particular units and how they transition between units. A Mixed Integer Programming model approximates an optimal admission control policy for the network of units. While enforcing low levels of patient blocking, we optimize a monotonic dual-threshold admission policy. A hospital network including Intermediate Care Units (IMCs) and Intensive Care Units (ICUs) was considered for validation. The optimized model indicated a reduction in the risk levels required for admission, and weekly average admissions to ICUs and IMCs increased by 37% and 12%, respectively, with minimal blocking. Our methodology captures utilization and accessibility in a network model of care pathways while supporting the personalized allocation of scarce care resources to the neediest patients. The interesting benefits of admission thresholds that vary by day of week are studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10729-018-9439-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3143265", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4313175", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1119244", 
        "issn": [
          "1386-9620", 
          "1572-9389"
        ], 
        "name": "Health Care Management Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Data-driven optimization methodology for admission control in critical care units", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "27f00755b0e92749b1e8c38a17fbbdecde7525093a729bbc7e81b4c6d988e18d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29536293"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815649"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10729-018-9439-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101517811"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10729-018-9439-5", 
      "https://app.dimensions.ai/details/publication/pub.1101517811"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127451_00000010.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10729-018-9439-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10729-018-9439-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10729-018-9439-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10729-018-9439-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10729-018-9439-5'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      58 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10729-018-9439-5 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Ne87be86a67e544a38442284e40669a3f
4 schema:citation sg:pub.10.1007/s00134-010-1933-2
5 sg:pub.10.1007/s11606-016-3654-x
6 sg:pub.10.1023/a:1024457800682
7 https://doi.org/10.1001/archinte.158.10.1144
8 https://doi.org/10.1001/archinternmed.2011.2315
9 https://doi.org/10.1001/archinternmed.2012.2606
10 https://doi.org/10.1001/jama.288.16.1987
11 https://doi.org/10.1002/jhm.1998
12 https://doi.org/10.1002/jhm.2250
13 https://doi.org/10.1002/jhm.817
14 https://doi.org/10.1016/j.amjsurg.2013.08.044
15 https://doi.org/10.1016/j.jbi.2013.06.011
16 https://doi.org/10.1016/j.jcrc.2009.06.010
17 https://doi.org/10.1017/s0266462305050087
18 https://doi.org/10.1080/0740817x.2014.955151
19 https://doi.org/10.1097/00000542-200306000-00029
20 https://doi.org/10.1097/00003246-199903000-00048
21 https://doi.org/10.1097/01.ccm.0000130175.38521.9f
22 https://doi.org/10.1097/01.ccm.0000253407.89594.15
23 https://doi.org/10.1097/01.ccm.0000266585.74905.5a
24 https://doi.org/10.1097/01.ccm.0000299738.26888.37
25 https://doi.org/10.1097/ccm.0b013e3181b090d0
26 https://doi.org/10.1097/ccm.0b013e3182374828
27 https://doi.org/10.1097/mcc.0b013e328332f54f
28 https://doi.org/10.1111/j.1937-5956.2011.01231.x
29 https://doi.org/10.1142/s0219622002000439
30 https://doi.org/10.1287/mnsc.2014.2057
31 https://doi.org/10.1287/msom.1110.0341
32 https://doi.org/10.1287/opre.1120.1105
33 https://doi.org/10.1287/opre.2014.1317
34 https://doi.org/10.1513/annalsats.201409-419oc
35 https://doi.org/10.5034/inquiryjrnl_39.4.400
36 schema:datePublished 2018-03-13
37 schema:datePublishedReg 2018-03-13
38 schema:description The decision of whether to admit a patient to a critical care unit is a crucial operational problem that has significant influence on both hospital performance and patient outcomes. Hospitals currently lack a methodology to selectively admit patients to these units in a way that patient health risk metrics can be incorporated while considering the congestion that will occur. The hospital is modeled as a complex loss queueing network with a stochastic model of how long risk-stratified patients spend time in particular units and how they transition between units. A Mixed Integer Programming model approximates an optimal admission control policy for the network of units. While enforcing low levels of patient blocking, we optimize a monotonic dual-threshold admission policy. A hospital network including Intermediate Care Units (IMCs) and Intensive Care Units (ICUs) was considered for validation. The optimized model indicated a reduction in the risk levels required for admission, and weekly average admissions to ICUs and IMCs increased by 37% and 12%, respectively, with minimal blocking. Our methodology captures utilization and accessibility in a network model of care pathways while supporting the personalized allocation of scarce care resources to the neediest patients. The interesting benefits of admission thresholds that vary by day of week are studied.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1119244
43 schema:name Data-driven optimization methodology for admission control in critical care units
44 schema:pagination 1-18
45 schema:productId N1cc1cbfca585488786e9ee0922ba9e37
46 N51783f84b71f47ca989ff6ee9052a2a5
47 N79b8e2052c0c4297b3d066a603146a22
48 Nad218d856eba48caafaa684912dc2395
49 Nedda52e3f1e048e19cb0d3212563516c
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101517811
51 https://doi.org/10.1007/s10729-018-9439-5
52 schema:sdDatePublished 2019-04-11T11:43
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N74562d42d57d432d91849c9fad771ff3
55 schema:url https://link.springer.com/10.1007%2Fs10729-018-9439-5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N15d3782a4e704e5881cb70c9030859b6 rdf:first sg:person.012163705411.00
60 rdf:rest N546f25c837604bad8a8cacf9872877e8
61 N1cc1cbfca585488786e9ee0922ba9e37 schema:name readcube_id
62 schema:value 27f00755b0e92749b1e8c38a17fbbdecde7525093a729bbc7e81b4c6d988e18d
63 rdf:type schema:PropertyValue
64 N2cb7517e724a42f59ed6dda21c2a5e98 rdf:first sg:person.010573114213.80
65 rdf:rest rdf:nil
66 N44e6b7c57a764323a9dffc2c34f182d7 schema:name Lean Care Solutions Corp, Bloomington, IN, USA
67 rdf:type schema:Organization
68 N51783f84b71f47ca989ff6ee9052a2a5 schema:name dimensions_id
69 schema:value pub.1101517811
70 rdf:type schema:PropertyValue
71 N546f25c837604bad8a8cacf9872877e8 rdf:first sg:person.01205145052.19
72 rdf:rest N2cb7517e724a42f59ed6dda21c2a5e98
73 N74562d42d57d432d91849c9fad771ff3 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N79b8e2052c0c4297b3d066a603146a22 schema:name pubmed_id
76 schema:value 29536293
77 rdf:type schema:PropertyValue
78 Nad218d856eba48caafaa684912dc2395 schema:name nlm_unique_id
79 schema:value 9815649
80 rdf:type schema:PropertyValue
81 Ne87be86a67e544a38442284e40669a3f rdf:first sg:person.015600454634.21
82 rdf:rest N15d3782a4e704e5881cb70c9030859b6
83 Nedda52e3f1e048e19cb0d3212563516c schema:name doi
84 schema:value 10.1007/s10729-018-9439-5
85 rdf:type schema:PropertyValue
86 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
87 schema:name Medical and Health Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
90 schema:name Public Health and Health Services
91 rdf:type schema:DefinedTerm
92 sg:grant.3143265 http://pending.schema.org/fundedItem sg:pub.10.1007/s10729-018-9439-5
93 rdf:type schema:MonetaryGrant
94 sg:grant.4313175 http://pending.schema.org/fundedItem sg:pub.10.1007/s10729-018-9439-5
95 rdf:type schema:MonetaryGrant
96 sg:journal.1119244 schema:issn 1386-9620
97 1572-9389
98 schema:name Health Care Management Science
99 rdf:type schema:Periodical
100 sg:person.010573114213.80 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
101 schema:familyName Van Oyen
102 schema:givenName Mark P.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573114213.80
104 rdf:type schema:Person
105 sg:person.01205145052.19 schema:affiliation https://www.grid.ac/institutes/grid.416444.7
106 schema:familyName Cowen
107 schema:givenName Mark E.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205145052.19
109 rdf:type schema:Person
110 sg:person.012163705411.00 schema:affiliation N44e6b7c57a764323a9dffc2c34f182d7
111 schema:familyName Deglise-Hawkinson
112 schema:givenName Jivan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163705411.00
114 rdf:type schema:Person
115 sg:person.015600454634.21 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
116 schema:familyName Meisami
117 schema:givenName Amirhossein
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015600454634.21
119 rdf:type schema:Person
120 sg:pub.10.1007/s00134-010-1933-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037710572
121 https://doi.org/10.1007/s00134-010-1933-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11606-016-3654-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052812554
124 https://doi.org/10.1007/s11606-016-3654-x
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1024457800682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046669184
127 https://doi.org/10.1023/a:1024457800682
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1001/archinte.158.10.1144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022046595
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1001/archinternmed.2011.2315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011375904
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1001/archinternmed.2012.2606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021719266
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1001/jama.288.16.1987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040895097
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/jhm.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028278131
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/jhm.2250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759638
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/jhm.817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869790
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.amjsurg.2013.08.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029933922
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jbi.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022314068
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jcrc.2009.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016581309
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/s0266462305050087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006631584
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/0740817x.2014.955151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020621853
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1097/00000542-200306000-00029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030445142
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1097/00003246-199903000-00048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060173955
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1097/01.ccm.0000130175.38521.9f schema:sameAs https://app.dimensions.ai/details/publication/pub.1048269982
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1097/01.ccm.0000253407.89594.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050374829
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1097/01.ccm.0000266585.74905.5a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044369886
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1097/01.ccm.0000299738.26888.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009039750
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1097/ccm.0b013e3181b090d0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050677378
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1097/ccm.0b013e3182374828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043210630
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1097/mcc.0b013e328332f54f schema:sameAs https://app.dimensions.ai/details/publication/pub.1006743906
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/j.1937-5956.2011.01231.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024656162
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1142/s0219622002000439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063000680
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1287/mnsc.2014.2057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064717793
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1287/msom.1110.0341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064725043
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1287/opre.1120.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726660
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1287/opre.2014.1317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064728019
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1513/annalsats.201409-419oc schema:sameAs https://app.dimensions.ai/details/publication/pub.1023808185
184 rdf:type schema:CreativeWork
185 https://doi.org/10.5034/inquiryjrnl_39.4.400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036155461
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
188 schema:name Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.416444.7 schema:alternateName St Joseph Mercy Hospital
191 schema:name Center for Healthcare Analytics and Performance Improvement, St. Joseph Mercy Hospital, Ann Arbor, MI, USA
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...