Scheduling rules to achieve lead-time targets in outpatient appointment systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Thu-Ba T. Nguyen, Appa Iyer Sivakumar, Stephen C. Graves

ABSTRACT

This paper considers how to schedule appointments for outpatients, for a clinic that is subject to appointment lead-time targets for both new and returning patients. We develop heuristic rules, which are the exact and relaxed appointment scheduling rules, to schedule each new patient appointment (only) in light of uncertainty about future arrivals. The scheduling rules entail two decisions. First, the rules need to determine whether or not a patient's request can be accepted; then, if the request is not rejected, the rules prescribe how to assign the patient to an available slot. The intent of the scheduling rules is to maximize the utilization of the planned resource (i.e., the physician staff), or equivalently to maximize the number of patients that are admitted, while maintaining the service targets on the median, the 95th percentile, and the maximum appointment lead-times. We test the proposed scheduling rules with numerical experiments using real data from the chosen clinic of Tan Tock Seng hospital in Singapore. The results show the efficiency and the efficacy of the scheduling rules, in terms of the service-target satisfaction and the resource utilization. From the sensitivity analysis, we find that the performance of the proposed scheduling rules is fairly robust to the specification of the established lead-time targets. More... »

PAGES

578-589

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10729-016-9374-2

DOI

http://dx.doi.org/10.1007/s10729-016-9374-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047312395

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27502955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ambulatory Care Facilities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Appointments and Schedules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Efficiency, Organizational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Services Accessibility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Organizational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Outpatients", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Resource Allocation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Singapore", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waiting Lists", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Manufacturing Systems and Technology Program, Singapore-MIT Alliance, 65 Nanyang Drive, 637460, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Thu-Ba T.", 
        "id": "sg:person.01231635445.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231635445.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "Manufacturing Systems and Technology Program, Singapore-MIT Alliance, 65 Nanyang Drive, 637460, Singapore, Singapore", 
            "School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, 637460, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivakumar", 
        "givenName": "Appa Iyer", 
        "id": "sg:person.011353521341.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353521341.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Manufacturing Systems and Technology Program, Singapore-MIT Alliance, 65 Nanyang Drive, 637460, Singapore, Singapore", 
            "Sloan School of Management, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graves", 
        "givenName": "Stephen C.", 
        "id": "sg:person.01346064045.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346064045.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0047279400004748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001478970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhealeco.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001519928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408170903396459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004320356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orhc.2013.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006299944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408170802165823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008425084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010177541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10729-014-9284-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011619269", 
          "https://doi.org/10.1007/s10729-014-9284-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-197912000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014953367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-197912000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014953367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2013.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015737082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2009.07.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020912397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021519145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1386-5056(03)00008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022777681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1386-5056(03)00008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022777681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-4632.2007.03078.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027440503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0272-6963(95)00044-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032459819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007635012421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032860693", 
          "https://doi.org/10.1023/a:1007635012421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/109467050141002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033362621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/109467050141002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033362621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.09.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0954-6111(08)80013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(79)90245-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043718860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5915.2007.00158.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048590905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2600631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050052169", 
          "https://doi.org/10.1057/palgrave.jors.2600631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-196407000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050444569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005650-196407000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050444569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.08.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050731729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1937-5956.2003.tb00218.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051023146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1937-5956.2003.tb00218.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051023146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.1991.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052207609", 
          "https://doi.org/10.1057/jors.1991.144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.1070.0802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064714828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.38.12.1750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.29.2.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729188"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "This paper considers how to schedule appointments for outpatients, for a clinic that is subject to appointment lead-time targets for both new and returning patients. We develop heuristic rules, which are the exact and relaxed appointment scheduling rules, to schedule each new patient appointment (only) in light of uncertainty about future arrivals. The scheduling rules entail two decisions. First, the rules need to determine whether or not a patient's request can be accepted; then, if the request is not rejected, the rules prescribe how to assign the patient to an available slot. The intent of the scheduling rules is to maximize the utilization of the planned resource (i.e., the physician staff), or equivalently to maximize the number of patients that are admitted, while maintaining the service targets on the median, the 95th percentile, and the maximum appointment lead-times. We test the proposed scheduling rules with numerical experiments using real data from the chosen clinic of Tan Tock Seng hospital in Singapore. The results show the efficiency and the efficacy of the scheduling rules, in terms of the service-target satisfaction and the resource utilization. From the sensitivity analysis, we find that the performance of the proposed scheduling rules is fairly robust to the specification of the established lead-time targets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10729-016-9374-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1119244", 
        "issn": [
          "1386-9620", 
          "1572-9389"
        ], 
        "name": "Health Care Management Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Scheduling rules to achieve lead-time targets in outpatient appointment systems", 
    "pagination": "578-589", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e161c3c838d7e11e7a4b77c6f843dca5e78f25ea4c97f072acdb4255e040ab7c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27502955"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815649"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10729-016-9374-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047312395"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10729-016-9374-2", 
      "https://app.dimensions.ai/details/publication/pub.1047312395"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10729-016-9374-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10729-016-9374-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10729-016-9374-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10729-016-9374-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10729-016-9374-2'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      68 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10729-016-9374-2 schema:about N1bbe1220ccc744e2b23cc26bc45e2576
2 N2150641730684f8782544d6f79bd2b92
3 N3e03763f399042c8b4945bf49b139dcc
4 N448657f7d0624f27ac5a7498d85343e7
5 N67bed85f264a4a579690a1000139b400
6 N75d24faea9ee408699f9ea51e40ea194
7 N8bbd810d68ae427fa577597ad8606055
8 N9ea41c4c367e43c694daaf8fa7c55548
9 Nca0989c3d72a4324a1ba4e2049c09780
10 Nd5b3590cd305442480510415b3e921f5
11 Nd603edd67d514d82a85d78ae6c7c2734
12 anzsrc-for:01
13 anzsrc-for:0102
14 schema:author Neb497656ee064da286ecd928bb5ccafd
15 schema:citation sg:pub.10.1007/s10729-014-9284-0
16 sg:pub.10.1023/a:1007635012421
17 sg:pub.10.1057/jors.1991.144
18 sg:pub.10.1057/palgrave.jors.2600631
19 https://doi.org/10.1016/0272-6963(95)00044-5
20 https://doi.org/10.1016/0377-2217(79)90245-5
21 https://doi.org/10.1016/j.dam.2011.07.005
22 https://doi.org/10.1016/j.ejor.2006.12.003
23 https://doi.org/10.1016/j.ejor.2014.09.043
24 https://doi.org/10.1016/j.jhealeco.2009.09.003
25 https://doi.org/10.1016/j.omega.2013.07.004
26 https://doi.org/10.1016/j.orhc.2013.03.002
27 https://doi.org/10.1016/j.procs.2015.08.151
28 https://doi.org/10.1016/j.tcs.2009.07.055
29 https://doi.org/10.1016/s0954-6111(08)80013-3
30 https://doi.org/10.1016/s1386-5056(03)00008-x
31 https://doi.org/10.1017/s0047279400004748
32 https://doi.org/10.1080/07408170802165823
33 https://doi.org/10.1080/07408170903396459
34 https://doi.org/10.1097/00005650-196407000-00002
35 https://doi.org/10.1097/00005650-197912000-00004
36 https://doi.org/10.1111/j.1365-4632.2007.03078.x
37 https://doi.org/10.1111/j.1540-5915.2007.00158.x
38 https://doi.org/10.1111/j.1937-5956.2003.tb00218.x
39 https://doi.org/10.1177/109467050141002
40 https://doi.org/10.1287/mnsc.1070.0802
41 https://doi.org/10.1287/mnsc.38.12.1750
42 https://doi.org/10.1287/opre.29.2.324
43 schema:datePublished 2017-12
44 schema:datePublishedReg 2017-12-01
45 schema:description This paper considers how to schedule appointments for outpatients, for a clinic that is subject to appointment lead-time targets for both new and returning patients. We develop heuristic rules, which are the exact and relaxed appointment scheduling rules, to schedule each new patient appointment (only) in light of uncertainty about future arrivals. The scheduling rules entail two decisions. First, the rules need to determine whether or not a patient's request can be accepted; then, if the request is not rejected, the rules prescribe how to assign the patient to an available slot. The intent of the scheduling rules is to maximize the utilization of the planned resource (i.e., the physician staff), or equivalently to maximize the number of patients that are admitted, while maintaining the service targets on the median, the 95th percentile, and the maximum appointment lead-times. We test the proposed scheduling rules with numerical experiments using real data from the chosen clinic of Tan Tock Seng hospital in Singapore. The results show the efficiency and the efficacy of the scheduling rules, in terms of the service-target satisfaction and the resource utilization. From the sensitivity analysis, we find that the performance of the proposed scheduling rules is fairly robust to the specification of the established lead-time targets.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N1b007f1ea8084507a4dce0b9cc6044ad
50 N946d205e57f34497b311540a73ffa341
51 sg:journal.1119244
52 schema:name Scheduling rules to achieve lead-time targets in outpatient appointment systems
53 schema:pagination 578-589
54 schema:productId N160a70a2b40548e1b7141931c5f24120
55 N3013101fbd434b6f8f55b49f8d99d5a9
56 Nb35b9ccd83b948d2a621a76f562c35c8
57 Ncc760944b8d54ee8ad9fd6578108a055
58 Ne76667da35794bd3af023b25ced3049c
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047312395
60 https://doi.org/10.1007/s10729-016-9374-2
61 schema:sdDatePublished 2019-04-11T12:44
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nddf8a52d683641819e235098bb5f17f8
64 schema:url https://link.springer.com/10.1007%2Fs10729-016-9374-2
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N160a70a2b40548e1b7141931c5f24120 schema:name dimensions_id
69 schema:value pub.1047312395
70 rdf:type schema:PropertyValue
71 N1b007f1ea8084507a4dce0b9cc6044ad schema:issueNumber 4
72 rdf:type schema:PublicationIssue
73 N1bbe1220ccc744e2b23cc26bc45e2576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Time Factors
75 rdf:type schema:DefinedTerm
76 N2150641730684f8782544d6f79bd2b92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Singapore
78 rdf:type schema:DefinedTerm
79 N3013101fbd434b6f8f55b49f8d99d5a9 schema:name readcube_id
80 schema:value e161c3c838d7e11e7a4b77c6f843dca5e78f25ea4c97f072acdb4255e040ab7c
81 rdf:type schema:PropertyValue
82 N3e03763f399042c8b4945bf49b139dcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Efficiency, Organizational
84 rdf:type schema:DefinedTerm
85 N448657f7d0624f27ac5a7498d85343e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Health Services Accessibility
87 rdf:type schema:DefinedTerm
88 N5992a26265194f6cadac7aba6758f355 rdf:first sg:person.01346064045.39
89 rdf:rest rdf:nil
90 N67bed85f264a4a579690a1000139b400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Organizational
92 rdf:type schema:DefinedTerm
93 N75d24faea9ee408699f9ea51e40ea194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Appointments and Schedules
95 rdf:type schema:DefinedTerm
96 N8bbd810d68ae427fa577597ad8606055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Outpatients
98 rdf:type schema:DefinedTerm
99 N946d205e57f34497b311540a73ffa341 schema:volumeNumber 20
100 rdf:type schema:PublicationVolume
101 N9ea41c4c367e43c694daaf8fa7c55548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 Nb35b9ccd83b948d2a621a76f562c35c8 schema:name nlm_unique_id
105 schema:value 9815649
106 rdf:type schema:PropertyValue
107 Nbf065f1064d6470ea99c1d9cce143df7 rdf:first sg:person.011353521341.49
108 rdf:rest N5992a26265194f6cadac7aba6758f355
109 Nca0989c3d72a4324a1ba4e2049c09780 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Waiting Lists
111 rdf:type schema:DefinedTerm
112 Ncc760944b8d54ee8ad9fd6578108a055 schema:name pubmed_id
113 schema:value 27502955
114 rdf:type schema:PropertyValue
115 Nd5b3590cd305442480510415b3e921f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Ambulatory Care Facilities
117 rdf:type schema:DefinedTerm
118 Nd603edd67d514d82a85d78ae6c7c2734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Resource Allocation
120 rdf:type schema:DefinedTerm
121 Nddf8a52d683641819e235098bb5f17f8 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Ne76667da35794bd3af023b25ced3049c schema:name doi
124 schema:value 10.1007/s10729-016-9374-2
125 rdf:type schema:PropertyValue
126 Neb497656ee064da286ecd928bb5ccafd rdf:first sg:person.01231635445.68
127 rdf:rest Nbf065f1064d6470ea99c1d9cce143df7
128 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
129 schema:name Mathematical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
132 schema:name Applied Mathematics
133 rdf:type schema:DefinedTerm
134 sg:journal.1119244 schema:issn 1386-9620
135 1572-9389
136 schema:name Health Care Management Science
137 rdf:type schema:Periodical
138 sg:person.011353521341.49 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
139 schema:familyName Sivakumar
140 schema:givenName Appa Iyer
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353521341.49
142 rdf:type schema:Person
143 sg:person.01231635445.68 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
144 schema:familyName Nguyen
145 schema:givenName Thu-Ba T.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231635445.68
147 rdf:type schema:Person
148 sg:person.01346064045.39 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
149 schema:familyName Graves
150 schema:givenName Stephen C.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346064045.39
152 rdf:type schema:Person
153 sg:pub.10.1007/s10729-014-9284-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011619269
154 https://doi.org/10.1007/s10729-014-9284-0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/a:1007635012421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032860693
157 https://doi.org/10.1023/a:1007635012421
158 rdf:type schema:CreativeWork
159 sg:pub.10.1057/jors.1991.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207609
160 https://doi.org/10.1057/jors.1991.144
161 rdf:type schema:CreativeWork
162 sg:pub.10.1057/palgrave.jors.2600631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050052169
163 https://doi.org/10.1057/palgrave.jors.2600631
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0272-6963(95)00044-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032459819
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0377-2217(79)90245-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043718860
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.dam.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021519145
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ejor.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010177541
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ejor.2014.09.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040692251
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jhealeco.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001519928
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.omega.2013.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015737082
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.orhc.2013.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006299944
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.procs.2015.08.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050731729
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.tcs.2009.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020912397
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0954-6111(08)80013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930891
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1386-5056(03)00008-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022777681
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1017/s0047279400004748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001478970
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/07408170802165823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008425084
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/07408170903396459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004320356
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1097/00005650-196407000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050444569
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1097/00005650-197912000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014953367
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1365-4632.2007.03078.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027440503
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1540-5915.2007.00158.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048590905
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1937-5956.2003.tb00218.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051023146
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1177/109467050141002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033362621
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1287/mnsc.1070.0802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064714828
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1287/mnsc.38.12.1750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720900
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1287/opre.29.2.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729188
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
214 schema:name Manufacturing Systems and Technology Program, Singapore-MIT Alliance, 65 Nanyang Drive, 637460, Singapore, Singapore
215 Sloan School of Management, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.429485.6 schema:alternateName Singapore-MIT Alliance for Research and Technology
218 schema:name Manufacturing Systems and Technology Program, Singapore-MIT Alliance, 65 Nanyang Drive, 637460, Singapore, Singapore
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
221 schema:name Manufacturing Systems and Technology Program, Singapore-MIT Alliance, 65 Nanyang Drive, 637460, Singapore, Singapore
222 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, 637460, Singapore, Singapore
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...