Group Decision Making with Dispersion in the Analytic Hierarchy Process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06-11

AUTHORS

Natalie M. Scala, Jayant Rajgopal, Luis G. Vargas, Kim LaScola Needy

ABSTRACT

With group judgments in the context of the Analytic Hierarchy Process (AHP) one would hope for broad consensus among the decision makers. However, in practice this will not always be the case, and significant dispersion may exist among the judgments. Too much dispersion violates the principle of Pareto Optimality at the comparison level and/or matrix level, and if this happens, then the group may be homogenous in some comparisons and heterogeneous in others. The question then arises as to what would be an appropriate aggregation scheme when a consensus cannot be reached and the decision makers are either unwilling or unable to revise their judgments. In particular, the traditional aggregation via the geometric mean has been shown to be inappropriate in such situations. In this paper, we propose a new method for aggregating judgments when the raw geometric mean cannot be used. Our work is motivated by a supply chain problem of managing spare parts in the nuclear power generation sector and can be applied whenever the AHP is used with judgments from multiple decision makers. The method makes use of principal components analysis (PCA) to combine the judgments into one aggregated value for each pairwise comparison. We show that this approach is equivalent to using a weighted geometric mean with the weights obtained from the PCA. More... »

PAGES

355-372

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10726-015-9445-7

DOI

http://dx.doi.org/10.1007/s10726-015-9445-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001951876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Business and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of e-Business and Technology Management, Towson University, 8000 York Road, 21252, Towson, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.265122.0", 
          "name": [
            "Department of e-Business and Technology Management, Towson University, 8000 York Road, 21252, Towson, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scala", 
        "givenName": "Natalie M.", 
        "id": "sg:person.016423317043.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423317043.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Industrial Engineering, University of Pittsburgh, 1048 Benedum Hall, 15261, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Industrial Engineering, University of Pittsburgh, 1048 Benedum Hall, 15261, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajgopal", 
        "givenName": "Jayant", 
        "id": "sg:person.01355623347.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355623347.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Katz Graduate School of Business, University of Pittsburgh, 356 Mervis Hall, 15261, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Katz Graduate School of Business, University of Pittsburgh, 356 Mervis Hall, 15261, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vargas", 
        "givenName": "Luis G.", 
        "id": "sg:person.013723757207.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723757207.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School and International Education, University of Arkansas, 213B Ozark Hall, 72701, Fayetteville, AR, USA", 
          "id": "http://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Graduate School and International Education, University of Arkansas, 213B Ozark Hall, 72701, Fayetteville, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Needy", 
        "givenName": "Kim LaScola", 
        "id": "sg:person.07550035022.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07550035022.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011201501379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031743597", 
          "https://doi.org/10.1023/a:1011201501379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10726-006-9050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044071132", 
          "https://doi.org/10.1007/s10726-006-9050-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10726-007-9071-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052050303", 
          "https://doi.org/10.1007/s10726-007-9071-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-23529-9_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046991804", 
          "https://doi.org/10.1007/0-387-23529-9_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00355-011-0541-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024636838", 
          "https://doi.org/10.1007/s00355-011-0541-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008622202638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037743328", 
          "https://doi.org/10.1023/a:1008622202638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024948630255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014514144", 
          "https://doi.org/10.1023/a:1024948630255"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06-11", 
    "datePublishedReg": "2015-06-11", 
    "description": "With group judgments in the context of the Analytic Hierarchy Process (AHP) one would hope for broad consensus among the decision makers. However, in practice this will not always be the case, and significant dispersion may exist among the judgments. Too much dispersion violates the principle of Pareto Optimality at the comparison level and/or matrix level, and if this happens, then the group may be homogenous in some comparisons and heterogeneous in others. The question then arises as to what would be an appropriate aggregation scheme when a consensus cannot be reached and the decision makers are either unwilling or unable to revise their judgments. In particular, the traditional aggregation via the geometric mean has been shown to be inappropriate in such situations. In this paper, we propose a new method for aggregating judgments when the raw geometric mean cannot be used. Our work is motivated by a supply chain problem of managing spare parts in the nuclear power generation sector and can be applied whenever the AHP is used with judgments from multiple decision makers. The method makes use of principal components analysis (PCA) to combine the judgments into one aggregated value for each pairwise comparison. We show that this approach is equivalent to using a weighted geometric mean with the weights obtained from the PCA.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10726-015-9445-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136143", 
        "issn": [
          "0926-2644", 
          "1572-9907"
        ], 
        "name": "Group Decision and Negotiation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "weighted geometric mean", 
      "supply chain problem", 
      "traditional aggregation", 
      "geometric mean", 
      "multiple decision makers", 
      "chain problem", 
      "Pareto optimality", 
      "appropriate aggregation scheme", 
      "significant dispersion", 
      "matrix level", 
      "analytic hierarchy process", 
      "aggregation scheme", 
      "decision makers", 
      "new method", 
      "group decision", 
      "optimality", 
      "principal component analysis", 
      "dispersion", 
      "such situations", 
      "scheme", 
      "hierarchy process", 
      "problem", 
      "means", 
      "spare parts", 
      "principles", 
      "comparison level", 
      "component analysis", 
      "approach", 
      "comparison", 
      "group judgments", 
      "process", 
      "cases", 
      "work", 
      "values", 
      "situation", 
      "pairwise comparisons", 
      "consensus", 
      "analysis", 
      "makers", 
      "part", 
      "power generation sector", 
      "generation sector", 
      "questions", 
      "use", 
      "context", 
      "decisions", 
      "aggregation", 
      "weight", 
      "judgments", 
      "levels", 
      "sector", 
      "broad consensus", 
      "group", 
      "practice", 
      "method", 
      "paper"
    ], 
    "name": "Group Decision Making with Dispersion in the Analytic Hierarchy Process", 
    "pagination": "355-372", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001951876"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10726-015-9445-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10726-015-9445-7", 
      "https://app.dimensions.ai/details/publication/pub.1001951876"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_673.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10726-015-9445-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10726-015-9445-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10726-015-9445-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10726-015-9445-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10726-015-9445-7'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      87 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10726-015-9445-7 schema:about anzsrc-for:15
2 anzsrc-for:1503
3 schema:author N9e181b21bf2645fa897c8b25aac334ac
4 schema:citation sg:pub.10.1007/0-387-23529-9_25
5 sg:pub.10.1007/s00355-011-0541-6
6 sg:pub.10.1007/s10726-006-9050-x
7 sg:pub.10.1007/s10726-007-9071-0
8 sg:pub.10.1023/a:1008622202638
9 sg:pub.10.1023/a:1011201501379
10 sg:pub.10.1023/a:1024948630255
11 schema:datePublished 2015-06-11
12 schema:datePublishedReg 2015-06-11
13 schema:description With group judgments in the context of the Analytic Hierarchy Process (AHP) one would hope for broad consensus among the decision makers. However, in practice this will not always be the case, and significant dispersion may exist among the judgments. Too much dispersion violates the principle of Pareto Optimality at the comparison level and/or matrix level, and if this happens, then the group may be homogenous in some comparisons and heterogeneous in others. The question then arises as to what would be an appropriate aggregation scheme when a consensus cannot be reached and the decision makers are either unwilling or unable to revise their judgments. In particular, the traditional aggregation via the geometric mean has been shown to be inappropriate in such situations. In this paper, we propose a new method for aggregating judgments when the raw geometric mean cannot be used. Our work is motivated by a supply chain problem of managing spare parts in the nuclear power generation sector and can be applied whenever the AHP is used with judgments from multiple decision makers. The method makes use of principal components analysis (PCA) to combine the judgments into one aggregated value for each pairwise comparison. We show that this approach is equivalent to using a weighted geometric mean with the weights obtained from the PCA.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N3c678268c18e4816940d4dc4d8d25d12
17 N8293c0f14c264c88aadd95514d7a82ce
18 sg:journal.1136143
19 schema:keywords Pareto optimality
20 aggregation
21 aggregation scheme
22 analysis
23 analytic hierarchy process
24 approach
25 appropriate aggregation scheme
26 broad consensus
27 cases
28 chain problem
29 comparison
30 comparison level
31 component analysis
32 consensus
33 context
34 decision makers
35 decisions
36 dispersion
37 generation sector
38 geometric mean
39 group
40 group decision
41 group judgments
42 hierarchy process
43 judgments
44 levels
45 makers
46 matrix level
47 means
48 method
49 multiple decision makers
50 new method
51 optimality
52 pairwise comparisons
53 paper
54 part
55 power generation sector
56 practice
57 principal component analysis
58 principles
59 problem
60 process
61 questions
62 scheme
63 sector
64 significant dispersion
65 situation
66 spare parts
67 such situations
68 supply chain problem
69 traditional aggregation
70 use
71 values
72 weight
73 weighted geometric mean
74 work
75 schema:name Group Decision Making with Dispersion in the Analytic Hierarchy Process
76 schema:pagination 355-372
77 schema:productId Nc68c9de4dbb845b1b49a3f4383fb5a01
78 Ne2a546cfcba446aca6bdf94871ce8106
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001951876
80 https://doi.org/10.1007/s10726-015-9445-7
81 schema:sdDatePublished 2022-11-24T21:00
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N472d394d16a14f088e91a6402f4b165b
84 schema:url https://doi.org/10.1007/s10726-015-9445-7
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N39265af363474190bf5c93ed72537198 rdf:first sg:person.07550035022.38
89 rdf:rest rdf:nil
90 N3c678268c18e4816940d4dc4d8d25d12 schema:issueNumber 2
91 rdf:type schema:PublicationIssue
92 N472d394d16a14f088e91a6402f4b165b schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8293c0f14c264c88aadd95514d7a82ce schema:volumeNumber 25
95 rdf:type schema:PublicationVolume
96 N9e181b21bf2645fa897c8b25aac334ac rdf:first sg:person.016423317043.62
97 rdf:rest Nf0812efa14e0421db7f4715a525d4ca2
98 Nc68c9de4dbb845b1b49a3f4383fb5a01 schema:name dimensions_id
99 schema:value pub.1001951876
100 rdf:type schema:PropertyValue
101 Ne2a546cfcba446aca6bdf94871ce8106 schema:name doi
102 schema:value 10.1007/s10726-015-9445-7
103 rdf:type schema:PropertyValue
104 Nf0812efa14e0421db7f4715a525d4ca2 rdf:first sg:person.01355623347.51
105 rdf:rest Nf5cd28ef46fa4d59995a25cdf4be9353
106 Nf5cd28ef46fa4d59995a25cdf4be9353 rdf:first sg:person.013723757207.56
107 rdf:rest N39265af363474190bf5c93ed72537198
108 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
109 schema:name Commerce, Management, Tourism and Services
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
112 schema:name Business and Management
113 rdf:type schema:DefinedTerm
114 sg:journal.1136143 schema:issn 0926-2644
115 1572-9907
116 schema:name Group Decision and Negotiation
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01355623347.51 schema:affiliation grid-institutes:grid.21925.3d
120 schema:familyName Rajgopal
121 schema:givenName Jayant
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355623347.51
123 rdf:type schema:Person
124 sg:person.013723757207.56 schema:affiliation grid-institutes:grid.21925.3d
125 schema:familyName Vargas
126 schema:givenName Luis G.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723757207.56
128 rdf:type schema:Person
129 sg:person.016423317043.62 schema:affiliation grid-institutes:grid.265122.0
130 schema:familyName Scala
131 schema:givenName Natalie M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423317043.62
133 rdf:type schema:Person
134 sg:person.07550035022.38 schema:affiliation grid-institutes:grid.411017.2
135 schema:familyName Needy
136 schema:givenName Kim LaScola
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07550035022.38
138 rdf:type schema:Person
139 sg:pub.10.1007/0-387-23529-9_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046991804
140 https://doi.org/10.1007/0-387-23529-9_25
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00355-011-0541-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024636838
143 https://doi.org/10.1007/s00355-011-0541-6
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10726-006-9050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044071132
146 https://doi.org/10.1007/s10726-006-9050-x
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10726-007-9071-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052050303
149 https://doi.org/10.1007/s10726-007-9071-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1008622202638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743328
152 https://doi.org/10.1023/a:1008622202638
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/a:1011201501379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031743597
155 https://doi.org/10.1023/a:1011201501379
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/a:1024948630255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014514144
158 https://doi.org/10.1023/a:1024948630255
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.21925.3d schema:alternateName Department of Industrial Engineering, University of Pittsburgh, 1048 Benedum Hall, 15261, Pittsburgh, PA, USA
161 Katz Graduate School of Business, University of Pittsburgh, 356 Mervis Hall, 15261, Pittsburgh, PA, USA
162 schema:name Department of Industrial Engineering, University of Pittsburgh, 1048 Benedum Hall, 15261, Pittsburgh, PA, USA
163 Katz Graduate School of Business, University of Pittsburgh, 356 Mervis Hall, 15261, Pittsburgh, PA, USA
164 rdf:type schema:Organization
165 grid-institutes:grid.265122.0 schema:alternateName Department of e-Business and Technology Management, Towson University, 8000 York Road, 21252, Towson, MD, USA
166 schema:name Department of e-Business and Technology Management, Towson University, 8000 York Road, 21252, Towson, MD, USA
167 rdf:type schema:Organization
168 grid-institutes:grid.411017.2 schema:alternateName Graduate School and International Education, University of Arkansas, 213B Ozark Hall, 72701, Fayetteville, AR, USA
169 schema:name Graduate School and International Education, University of Arkansas, 213B Ozark Hall, 72701, Fayetteville, AR, USA
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...