GABA shunt: a key-player in mitigation of ROS during stress View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04-09

AUTHORS

Mohammad Israil Ansari, Syed Uzma Jalil, Shamim Akhtar Ansari, Mirza Hasanuzzaman

ABSTRACT

Unfavorable environmental conditions such as heat, cold, drought, metal/metalloid toxicity, and pathogens enhance production of intra-and inter-cellular levels of reactive oxygen species (ROS) in plants. ROS, acting as signaling molecules, activate signal transduction pathways in response to various stresses. Alternatively, ROS cause irreversible cellular damage due to lipid peroxidation, oxidation of protein, inactivation of enzymes, DNA damage, and interact with other vital constituents of plant cells through their strong oxidative properties, which drastically alter plant morphological structures, becoming disadvantageous for survival and productivity. Higher plants have complex defense systems to scavenge ROS. Being a central molecule of the defense system, gamma-aminobutyric acid (GABA) is ubiquitous from prokaryotes to eukaryotes cells. GABA helps mitigate ROS in plants and GABA shunt pathway plays a key role either as metabolites or endogenous signaling molecules in several regulatory mechanisms under stress conditions. The GABA transporters (GATs) being activated with the attachment of GABA under environmental stress stimuli facilitate high content of Ca2+ into the cytosol. Ca2+ combines with calmodulin (CaM) -binding domain that activates the glutamate decarboxylase (GAD) enzyme for the conversion of glutamate into GABA. This synchronized process regulates GABA shunt gene expressions under stress conditions and improves defense mechanisms in plants. This review highlights the regulatory aspects of GABA shunt pathway for ROS production as well as in the defense mechanism of plants. More... »

PAGES

131-149

References to SciGraph publications

  • 2020-06-02. Stress Implications and Crop Productivity in PLANT ECOPHYSIOLOGY AND ADAPTATION UNDER CLIMATE CHANGE: MECHANISMS AND PERSPECTIVES I
  • 2017-01-07. Effects of Exogenous γ-Aminobutyric Acid (GABA) on Photosynthesis and Antioxidant System in Pepper (Capsicum annuum L.) Seedlings Under Low Light Stress in JOURNAL OF PLANT GROWTH REGULATION
  • 2020-02-25. γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems in SCIENTIFIC REPORTS
  • 2000-07. Induction of activin A is essential for the neuroprotective action of basic fibroblast growth factor in vivo in NATURE MEDICINE
  • 2000. The Regulation of GABA Accumulation by Heat Stress in Arabidopsis in PLANT TOLERANCE TO ABIOTIC STRESSES IN AGRICULTURE: ROLE OF GENETIC ENGINEERING
  • 2003-05. Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode in MOLECULAR BREEDING
  • 2009-12-05. Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer in MOLECULAR BIOLOGY REPORTS
  • 2016-07-26. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera) in SCIENTIFIC REPORTS
  • 2003-09. Overexpression of Glutamate Decarboxylase in Transgenic Tobacco Plants Deters Feeding by Phytophagous Insect Larvae in JOURNAL OF CHEMICAL ECOLOGY
  • 2015-03-31. GABA shunt deficiencies and accumulation of reactive oxygen species under UV treatments: insight from Arabidopsis thaliana calmodulin mutants in ACTA PHYSIOLOGIAE PLANTARUM
  • 2015-07-29. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters in NATURE COMMUNICATIONS
  • 2013-11-24. γ-Aminobutyric Acid (GABA) Imparts Partial Protection from Heat Stress Injury to Rice Seedlings by Improving Leaf Turgor and Upregulating Osmoprotectants and Antioxidants in JOURNAL OF PLANT GROWTH REGULATION
  • 2013-11-27. Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress in PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS
  • 2008-12-01. Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling in PHOTOSYNTHETICA
  • 2020-02-04. Production of γ-Aminobutyric Acid and Its Supplementary Role in the TCA Cycle in Rice (Oryza sativa L.) Seedlings in JOURNAL OF PLANT GROWTH REGULATION
  • 2019-05-24. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants in SCIENTIFIC REPORTS
  • 2010-09. Cold stress tolerance mechanisms in plants. A review in AGRONOMY FOR SUSTAINABLE DEVELOPMENT
  • 2013-01-25. Plant senescence and crop productivity in PLANT MOLECULAR BIOLOGY
  • 2018-06-08. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: involving in abscisic acid and ethylene-signalling pathways in PLANTA
  • 2019-01-30. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature in BMC PLANT BIOLOGY
  • 2009-05-26. Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings in PLANT GROWTH REGULATION
  • 2015-11-05. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes in BIOLOGIA PLANTARUM
  • 2001-08-15. Evidence that γ-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato in PLANTA
  • 2016-10-18. Effects of γ-Aminobutyric Acid, Glutamic Acid, and Calcium Chloride on Rice (Oryza sativa L.) Under Cold Stress During the Early Vegetative Stage in JOURNAL OF PLANT GROWTH REGULATION
  • 2015-12-18. Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses in BIOLOGIA PLANTARUM
  • 2020-04-11. Physiological Role of Gamma-Aminobutyric Acid in Salt Stress Tolerance in SALT AND DROUGHT STRESS TOLERANCE IN PLANTS
  • 2019-02-01. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis in BMC PLANT BIOLOGY
  • 2017-03-08. γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants in SCIENTIFIC REPORTS
  • 2016-10-11. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production in SCIENTIFIC REPORTS
  • 2010-02-01. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance in BMC PLANT BIOLOGY
  • 2017-04-13. γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems in ECOTOXICOLOGY
  • 2011-04-13. Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants in PLANT BIOTECHNOLOGY REPORTS
  • 2017-08-18. GABA accretion reduces Lsi-1 and Lsi-2 gene expressions and modulates physiological responses in Oryza sativa to provide tolerance towards arsenic in SCIENTIFIC REPORTS
  • 2019-01-24. γ-Aminobutyric Acid Promotes Chloroplast Ultrastructure, Antioxidant Capacity, and Growth of Waterlogged Maize Seedlings in SCIENTIFIC REPORTS
  • 2011-11-17. Effects of abiotic stress on plants: a systems biology perspective in BMC PLANT BIOLOGY
  • 2021-02-05. Regulation of secondary antioxidants and carbohydrates by gamma-aminobutyric acid under salinity–alkalinity stress in rice (Oryza sativa L.) in BIOLOGIA FUTURA
  • 2015-05-08. γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress in PLANT GROWTH REGULATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10725-021-00710-y

    DOI

    http://dx.doi.org/10.1007/s10725-021-00710-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1137044089


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Botany, University of Lucknow, 226 007, Lucknow, India", 
              "id": "http://www.grid.ac/institutes/grid.411488.0", 
              "name": [
                "Department of Botany, University of Lucknow, 226 007, Lucknow, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ansari", 
            "givenName": "Mohammad Israil", 
            "id": "sg:person.0765140604.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765140604.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226 010, Lucknow, India", 
              "id": "http://www.grid.ac/institutes/grid.444644.2", 
              "name": [
                "Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226 010, Lucknow, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jalil", 
            "givenName": "Syed Uzma", 
            "id": "sg:person.0664372314.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664372314.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Forest Research and Productivity, 835 303, Ranchi, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Forest Research and Productivity, 835 303, Ranchi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ansari", 
            "givenName": "Shamim Akhtar", 
            "id": "sg:person.012721664763.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721664763.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, 1207, Dhaka, Bangladesh", 
              "id": "http://www.grid.ac/institutes/grid.462795.b", 
              "name": [
                "Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, 1207, Dhaka, Bangladesh"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hasanuzzaman", 
            "givenName": "Mirza", 
            "id": "sg:person.011155532243.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155532243.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-981-15-2156-0_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128117523", 
              "https://doi.org/10.1007/978-981-15-2156-0_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-013-0013-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039922107", 
              "https://doi.org/10.1007/s11103-013-0013-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42977-020-00055-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135169069", 
              "https://doi.org/10.1007/s42977-020-00055-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11099-008-0098-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038426281", 
              "https://doi.org/10.1007/s11099-008-0098-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10535-015-0559-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031200105", 
              "https://doi.org/10.1007/s10535-015-0559-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep30338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032760683", 
              "https://doi.org/10.1038/srep30338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4323-3_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053657", 
              "https://doi.org/10.1007/978-94-011-4323-3_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-019-1646-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111773168", 
              "https://doi.org/10.1186/s12870-019-1646-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-36334-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111647406", 
              "https://doi.org/10.1038/s41598-018-36334-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12298-013-0203-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036257429", 
              "https://doi.org/10.1007/s12298-013-0203-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004250100632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048133542", 
              "https://doi.org/10.1007/s004250100632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-59592-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125104684", 
              "https://doi.org/10.1038/s41598-020-59592-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11738-015-1836-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001800343", 
              "https://doi.org/10.1007/s11738-015-1836-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10646-017-1800-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084813423", 
              "https://doi.org/10.1007/s10646-017-1800-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-09428-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091229843", 
              "https://doi.org/10.1038/s41598-017-09428-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-018-2915-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104476127", 
              "https://doi.org/10.1007/s00425-018-2915-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-44163-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115627566", 
              "https://doi.org/10.1038/s41598-019-44163-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00344-020-10066-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124592574", 
              "https://doi.org/10.1007/s00344-020-10066-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00344-016-9634-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044846683", 
              "https://doi.org/10.1007/s00344-016-9634-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-40277-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126590803", 
              "https://doi.org/10.1007/978-3-030-40277-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-015-0074-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007490249", 
              "https://doi.org/10.1007/s10725-015-0074-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00344-016-9652-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040289130", 
              "https://doi.org/10.1007/s00344-016-9652-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-10-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029206709", 
              "https://doi.org/10.1186/1471-2229-10-20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/agro/2009050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047412113", 
              "https://doi.org/10.1051/agro/2009050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024578431", 
              "https://doi.org/10.1038/ncomms8879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11816-011-0174-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019898697", 
              "https://doi.org/10.1007/s11816-011-0174-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep35115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028400605", 
              "https://doi.org/10.1038/srep35115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00344-013-9389-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044677126", 
              "https://doi.org/10.1007/s00344-013-9389-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/77548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049561712", 
              "https://doi.org/10.1038/77548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-009-9937-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029095988", 
              "https://doi.org/10.1007/s11033-009-9937-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-11-163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044991587", 
              "https://doi.org/10.1186/1471-2229-11-163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084131527", 
              "https://doi.org/10.1038/srep43609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023483106582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010844174", 
              "https://doi.org/10.1023/a:1023483106582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-019-1660-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111838239", 
              "https://doi.org/10.1186/s12870-019-1660-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-009-9386-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002670509", 
              "https://doi.org/10.1007/s10725-009-9386-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025650914947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028113329", 
              "https://doi.org/10.1023/a:1025650914947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10535-015-0563-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024131961", 
              "https://doi.org/10.1007/s10535-015-0563-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-04-09", 
        "datePublishedReg": "2021-04-09", 
        "description": "Unfavorable environmental conditions such as heat, cold, drought, metal/metalloid toxicity, and pathogens enhance production of intra-and inter-cellular levels of reactive oxygen species (ROS) in plants. ROS, acting as signaling molecules, activate signal transduction pathways in response to various stresses. Alternatively, ROS cause irreversible cellular damage due to lipid peroxidation, oxidation of protein, inactivation of enzymes, DNA damage, and interact with other vital constituents of plant cells through their strong oxidative properties, which drastically alter plant morphological structures, becoming disadvantageous for survival and productivity. Higher plants have complex defense systems to scavenge ROS. Being a central molecule of the defense system, gamma-aminobutyric acid (GABA) is ubiquitous from prokaryotes to eukaryotes cells. GABA helps mitigate ROS in plants and GABA shunt pathway plays a key role either as metabolites or endogenous signaling molecules in several regulatory mechanisms under stress conditions. The GABA transporters (GATs) being activated with the attachment of GABA under environmental stress stimuli facilitate high content of Ca2+ into the cytosol. Ca2+ combines with calmodulin (CaM) -binding domain that activates the glutamate decarboxylase (GAD) enzyme for the conversion of glutamate into GABA. This synchronized process regulates GABA shunt gene expressions under stress conditions and improves defense mechanisms in plants. This review highlights the regulatory aspects of GABA shunt pathway for ROS production as well as in the defense mechanism of plants.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10725-021-00710-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1130569", 
            "issn": [
              "0167-6903", 
              "1573-5087"
            ], 
            "name": "Plant Growth Regulation", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "94"
          }
        ], 
        "keywords": [
          "reactive oxygen species", 
          "Metal/Metalloid Toxicity", 
          "activate signal transduction pathways", 
          "stress conditions", 
          "environmental stress stimuli", 
          "signal transduction pathways", 
          "calmodulin binding domain", 
          "unfavorable environmental conditions", 
          "defense mechanisms", 
          "plant morphological structures", 
          "GABA shunt pathway", 
          "defense system", 
          "inter-cellular level", 
          "complex defense system", 
          "plant cells", 
          "higher plants", 
          "oxidation of proteins", 
          "metalloid toxicity", 
          "eukaryote cells", 
          "GABA transporter", 
          "transduction pathways", 
          "conversion of glutamate", 
          "binding domains", 
          "regulatory mechanisms", 
          "gene expression", 
          "stress stimuli", 
          "DNA damage", 
          "decarboxylase enzyme", 
          "plants", 
          "environmental conditions", 
          "ROS production", 
          "central molecule", 
          "oxygen species", 
          "inactivation of enzymes", 
          "cellular damage", 
          "synchronized process", 
          "pathway", 
          "production of intra", 
          "irreversible cellular damage", 
          "vital constituents", 
          "strong oxidative properties", 
          "enzyme", 
          "shunt pathway", 
          "key role", 
          "gamma-aminobutyric acid", 
          "prokaryotes", 
          "regulatory aspects", 
          "cells", 
          "lipid peroxidation", 
          "molecules", 
          "cytosol", 
          "species", 
          "mechanism", 
          "protein", 
          "Ca2", 
          "transporters", 
          "morphological structure", 
          "drought", 
          "glutamate decarboxylase enzyme", 
          "inactivation", 
          "stress", 
          "production", 
          "expression", 
          "high content", 
          "domain", 
          "oxidative properties", 
          "damage", 
          "metabolites", 
          "glutamate", 
          "acid", 
          "productivity", 
          "peroxidation", 
          "role", 
          "survival", 
          "toxicity", 
          "attachment", 
          "conditions", 
          "response", 
          "intra", 
          "levels", 
          "constituents", 
          "structure", 
          "stimuli", 
          "content", 
          "oxidation", 
          "conversion", 
          "review", 
          "process", 
          "system", 
          "aspects", 
          "mitigation", 
          "properties", 
          "heat", 
          "attachment of GABA", 
          "GABA shunt gene expressions", 
          "shunt gene expressions", 
          "mitigation of ROS"
        ], 
        "name": "GABA shunt: a key-player in mitigation of ROS during stress", 
        "pagination": "131-149", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1137044089"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10725-021-00710-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10725-021-00710-y", 
          "https://app.dimensions.ai/details/publication/pub.1137044089"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_907.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10725-021-00710-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10725-021-00710-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10725-021-00710-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10725-021-00710-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10725-021-00710-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    337 TRIPLES      22 PREDICATES      160 URIs      114 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10725-021-00710-y schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 anzsrc-for:0607
    4 schema:author Necd93abe798448cc99c841fa0498b958
    5 schema:citation sg:pub.10.1007/978-3-030-40277-8_13
    6 sg:pub.10.1007/978-94-011-4323-3_3
    7 sg:pub.10.1007/978-981-15-2156-0_3
    8 sg:pub.10.1007/s00344-013-9389-6
    9 sg:pub.10.1007/s00344-016-9634-x
    10 sg:pub.10.1007/s00344-016-9652-8
    11 sg:pub.10.1007/s00344-020-10066-8
    12 sg:pub.10.1007/s00425-018-2915-9
    13 sg:pub.10.1007/s004250100632
    14 sg:pub.10.1007/s10535-015-0559-1
    15 sg:pub.10.1007/s10535-015-0563-5
    16 sg:pub.10.1007/s10646-017-1800-9
    17 sg:pub.10.1007/s10725-009-9386-8
    18 sg:pub.10.1007/s10725-015-0074-6
    19 sg:pub.10.1007/s11033-009-9937-0
    20 sg:pub.10.1007/s11099-008-0098-5
    21 sg:pub.10.1007/s11103-013-0013-8
    22 sg:pub.10.1007/s11738-015-1836-5
    23 sg:pub.10.1007/s11816-011-0174-3
    24 sg:pub.10.1007/s12298-013-0203-5
    25 sg:pub.10.1007/s42977-020-00055-z
    26 sg:pub.10.1023/a:1023483106582
    27 sg:pub.10.1023/a:1025650914947
    28 sg:pub.10.1038/77548
    29 sg:pub.10.1038/ncomms8879
    30 sg:pub.10.1038/s41598-017-09428-2
    31 sg:pub.10.1038/s41598-018-36334-y
    32 sg:pub.10.1038/s41598-019-44163-w
    33 sg:pub.10.1038/s41598-020-59592-1
    34 sg:pub.10.1038/srep30338
    35 sg:pub.10.1038/srep35115
    36 sg:pub.10.1038/srep43609
    37 sg:pub.10.1051/agro/2009050
    38 sg:pub.10.1186/1471-2229-10-20
    39 sg:pub.10.1186/1471-2229-11-163
    40 sg:pub.10.1186/s12870-019-1646-9
    41 sg:pub.10.1186/s12870-019-1660-y
    42 schema:datePublished 2021-04-09
    43 schema:datePublishedReg 2021-04-09
    44 schema:description Unfavorable environmental conditions such as heat, cold, drought, metal/metalloid toxicity, and pathogens enhance production of intra-and inter-cellular levels of reactive oxygen species (ROS) in plants. ROS, acting as signaling molecules, activate signal transduction pathways in response to various stresses. Alternatively, ROS cause irreversible cellular damage due to lipid peroxidation, oxidation of protein, inactivation of enzymes, DNA damage, and interact with other vital constituents of plant cells through their strong oxidative properties, which drastically alter plant morphological structures, becoming disadvantageous for survival and productivity. Higher plants have complex defense systems to scavenge ROS. Being a central molecule of the defense system, gamma-aminobutyric acid (GABA) is ubiquitous from prokaryotes to eukaryotes cells. GABA helps mitigate ROS in plants and GABA shunt pathway plays a key role either as metabolites or endogenous signaling molecules in several regulatory mechanisms under stress conditions. The GABA transporters (GATs) being activated with the attachment of GABA under environmental stress stimuli facilitate high content of Ca2+ into the cytosol. Ca2+ combines with calmodulin (CaM) -binding domain that activates the glutamate decarboxylase (GAD) enzyme for the conversion of glutamate into GABA. This synchronized process regulates GABA shunt gene expressions under stress conditions and improves defense mechanisms in plants. This review highlights the regulatory aspects of GABA shunt pathway for ROS production as well as in the defense mechanism of plants.
    45 schema:genre article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N229494789ae54b43a8a047c25be674be
    49 Na8100ac502b146bdb7b7ccb6c9651952
    50 sg:journal.1130569
    51 schema:keywords Ca2
    52 DNA damage
    53 GABA shunt gene expressions
    54 GABA shunt pathway
    55 GABA transporter
    56 Metal/Metalloid Toxicity
    57 ROS production
    58 acid
    59 activate signal transduction pathways
    60 aspects
    61 attachment
    62 attachment of GABA
    63 binding domains
    64 calmodulin binding domain
    65 cells
    66 cellular damage
    67 central molecule
    68 complex defense system
    69 conditions
    70 constituents
    71 content
    72 conversion
    73 conversion of glutamate
    74 cytosol
    75 damage
    76 decarboxylase enzyme
    77 defense mechanisms
    78 defense system
    79 domain
    80 drought
    81 environmental conditions
    82 environmental stress stimuli
    83 enzyme
    84 eukaryote cells
    85 expression
    86 gamma-aminobutyric acid
    87 gene expression
    88 glutamate
    89 glutamate decarboxylase enzyme
    90 heat
    91 high content
    92 higher plants
    93 inactivation
    94 inactivation of enzymes
    95 inter-cellular level
    96 intra
    97 irreversible cellular damage
    98 key role
    99 levels
    100 lipid peroxidation
    101 mechanism
    102 metabolites
    103 metalloid toxicity
    104 mitigation
    105 mitigation of ROS
    106 molecules
    107 morphological structure
    108 oxidation
    109 oxidation of proteins
    110 oxidative properties
    111 oxygen species
    112 pathway
    113 peroxidation
    114 plant cells
    115 plant morphological structures
    116 plants
    117 process
    118 production
    119 production of intra
    120 productivity
    121 prokaryotes
    122 properties
    123 protein
    124 reactive oxygen species
    125 regulatory aspects
    126 regulatory mechanisms
    127 response
    128 review
    129 role
    130 shunt gene expressions
    131 shunt pathway
    132 signal transduction pathways
    133 species
    134 stimuli
    135 stress
    136 stress conditions
    137 stress stimuli
    138 strong oxidative properties
    139 structure
    140 survival
    141 synchronized process
    142 system
    143 toxicity
    144 transduction pathways
    145 transporters
    146 unfavorable environmental conditions
    147 vital constituents
    148 schema:name GABA shunt: a key-player in mitigation of ROS during stress
    149 schema:pagination 131-149
    150 schema:productId N7093c14d4c8843f0ac9b776fd1375590
    151 Ndfaad97739064b0cbf0a5e6cce6243f4
    152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137044089
    153 https://doi.org/10.1007/s10725-021-00710-y
    154 schema:sdDatePublished 2022-01-01T19:01
    155 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    156 schema:sdPublisher Nf9027cd7af124a5a84bbd36d4b8af9ed
    157 schema:url https://doi.org/10.1007/s10725-021-00710-y
    158 sgo:license sg:explorer/license/
    159 sgo:sdDataset articles
    160 rdf:type schema:ScholarlyArticle
    161 N229494789ae54b43a8a047c25be674be schema:issueNumber 2
    162 rdf:type schema:PublicationIssue
    163 N7093c14d4c8843f0ac9b776fd1375590 schema:name doi
    164 schema:value 10.1007/s10725-021-00710-y
    165 rdf:type schema:PropertyValue
    166 N8d9e283bcb434a0e981cd3f245da5e21 rdf:first sg:person.012721664763.98
    167 rdf:rest Na8ec2c082ac34c84bfc26644e2b598ee
    168 Na8100ac502b146bdb7b7ccb6c9651952 schema:volumeNumber 94
    169 rdf:type schema:PublicationVolume
    170 Na8ec2c082ac34c84bfc26644e2b598ee rdf:first sg:person.011155532243.58
    171 rdf:rest rdf:nil
    172 Nb2e987ff83b24bdfa8728269250210d3 rdf:first sg:person.0664372314.00
    173 rdf:rest N8d9e283bcb434a0e981cd3f245da5e21
    174 Ndfaad97739064b0cbf0a5e6cce6243f4 schema:name dimensions_id
    175 schema:value pub.1137044089
    176 rdf:type schema:PropertyValue
    177 Necd93abe798448cc99c841fa0498b958 rdf:first sg:person.0765140604.32
    178 rdf:rest Nb2e987ff83b24bdfa8728269250210d3
    179 Nf9027cd7af124a5a84bbd36d4b8af9ed schema:name Springer Nature - SN SciGraph project
    180 rdf:type schema:Organization
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Biochemistry and Cell Biology
    186 rdf:type schema:DefinedTerm
    187 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    188 schema:name Plant Biology
    189 rdf:type schema:DefinedTerm
    190 sg:journal.1130569 schema:issn 0167-6903
    191 1573-5087
    192 schema:name Plant Growth Regulation
    193 schema:publisher Springer Nature
    194 rdf:type schema:Periodical
    195 sg:person.011155532243.58 schema:affiliation grid-institutes:grid.462795.b
    196 schema:familyName Hasanuzzaman
    197 schema:givenName Mirza
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155532243.58
    199 rdf:type schema:Person
    200 sg:person.012721664763.98 schema:affiliation grid-institutes:None
    201 schema:familyName Ansari
    202 schema:givenName Shamim Akhtar
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721664763.98
    204 rdf:type schema:Person
    205 sg:person.0664372314.00 schema:affiliation grid-institutes:grid.444644.2
    206 schema:familyName Jalil
    207 schema:givenName Syed Uzma
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664372314.00
    209 rdf:type schema:Person
    210 sg:person.0765140604.32 schema:affiliation grid-institutes:grid.411488.0
    211 schema:familyName Ansari
    212 schema:givenName Mohammad Israil
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765140604.32
    214 rdf:type schema:Person
    215 sg:pub.10.1007/978-3-030-40277-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126590803
    216 https://doi.org/10.1007/978-3-030-40277-8_13
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/978-94-011-4323-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053657
    219 https://doi.org/10.1007/978-94-011-4323-3_3
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/978-981-15-2156-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128117523
    222 https://doi.org/10.1007/978-981-15-2156-0_3
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00344-013-9389-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044677126
    225 https://doi.org/10.1007/s00344-013-9389-6
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00344-016-9634-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044846683
    228 https://doi.org/10.1007/s00344-016-9634-x
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00344-016-9652-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040289130
    231 https://doi.org/10.1007/s00344-016-9652-8
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00344-020-10066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124592574
    234 https://doi.org/10.1007/s00344-020-10066-8
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00425-018-2915-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476127
    237 https://doi.org/10.1007/s00425-018-2915-9
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s004250100632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048133542
    240 https://doi.org/10.1007/s004250100632
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s10535-015-0559-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031200105
    243 https://doi.org/10.1007/s10535-015-0559-1
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s10535-015-0563-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024131961
    246 https://doi.org/10.1007/s10535-015-0563-5
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10646-017-1800-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084813423
    249 https://doi.org/10.1007/s10646-017-1800-9
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s10725-009-9386-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002670509
    252 https://doi.org/10.1007/s10725-009-9386-8
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s10725-015-0074-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007490249
    255 https://doi.org/10.1007/s10725-015-0074-6
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s11033-009-9937-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029095988
    258 https://doi.org/10.1007/s11033-009-9937-0
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s11099-008-0098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038426281
    261 https://doi.org/10.1007/s11099-008-0098-5
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s11103-013-0013-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039922107
    264 https://doi.org/10.1007/s11103-013-0013-8
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s11738-015-1836-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001800343
    267 https://doi.org/10.1007/s11738-015-1836-5
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s11816-011-0174-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019898697
    270 https://doi.org/10.1007/s11816-011-0174-3
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s12298-013-0203-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036257429
    273 https://doi.org/10.1007/s12298-013-0203-5
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s42977-020-00055-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1135169069
    276 https://doi.org/10.1007/s42977-020-00055-z
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1023/a:1023483106582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010844174
    279 https://doi.org/10.1023/a:1023483106582
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1023/a:1025650914947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028113329
    282 https://doi.org/10.1023/a:1025650914947
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/77548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049561712
    285 https://doi.org/10.1038/77548
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ncomms8879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024578431
    288 https://doi.org/10.1038/ncomms8879
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41598-017-09428-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091229843
    291 https://doi.org/10.1038/s41598-017-09428-2
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41598-018-36334-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1111647406
    294 https://doi.org/10.1038/s41598-018-36334-y
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/s41598-019-44163-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1115627566
    297 https://doi.org/10.1038/s41598-019-44163-w
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/s41598-020-59592-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125104684
    300 https://doi.org/10.1038/s41598-020-59592-1
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/srep30338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032760683
    303 https://doi.org/10.1038/srep30338
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/srep35115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028400605
    306 https://doi.org/10.1038/srep35115
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/srep43609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131527
    309 https://doi.org/10.1038/srep43609
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1051/agro/2009050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047412113
    312 https://doi.org/10.1051/agro/2009050
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/1471-2229-10-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029206709
    315 https://doi.org/10.1186/1471-2229-10-20
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/1471-2229-11-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991587
    318 https://doi.org/10.1186/1471-2229-11-163
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/s12870-019-1646-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111773168
    321 https://doi.org/10.1186/s12870-019-1646-9
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/s12870-019-1660-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1111838239
    324 https://doi.org/10.1186/s12870-019-1660-y
    325 rdf:type schema:CreativeWork
    326 grid-institutes:None schema:alternateName Institute of Forest Research and Productivity, 835 303, Ranchi, India
    327 schema:name Institute of Forest Research and Productivity, 835 303, Ranchi, India
    328 rdf:type schema:Organization
    329 grid-institutes:grid.411488.0 schema:alternateName Department of Botany, University of Lucknow, 226 007, Lucknow, India
    330 schema:name Department of Botany, University of Lucknow, 226 007, Lucknow, India
    331 rdf:type schema:Organization
    332 grid-institutes:grid.444644.2 schema:alternateName Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226 010, Lucknow, India
    333 schema:name Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226 010, Lucknow, India
    334 rdf:type schema:Organization
    335 grid-institutes:grid.462795.b schema:alternateName Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, 1207, Dhaka, Bangladesh
    336 schema:name Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, 1207, Dhaka, Bangladesh
    337 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...