Distributed Late-binding Scheduling and Cooperative Data Caching View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Antonio Delgado Peris, José M. Hernández, Eduardo Huedo

ABSTRACT

Pull-based overlays are used in some of today’s largest computational grids. Job agents are submitted to resources with the duty of retrieving real workload from a central queue at runtime and executing it. This model helps overcome the problems of direct job submission in the highly complex grid environments, namely, heterogeneity, imprecise status information, relatively high failure rates and slow adaptation to changes of grid conditions or user priorities. This article presents a distributed scheduling architecture for such late-binding overlays. In this architecture, execution nodes share a distributed hash table and cooperatively perform job assignment. As our experiments prove, scalability problems of centralized matching are avoided, achieving low and predictable scheduling overheads even for execution of large workflows, and total turnaround times are improved. This is in line with the predictions of a theoretical model of grid workflow execution that the article also discusses. Scalability makes fine-grained scheduling possible and enables new functionalities, like a distributed data cache shared by the execution nodes, which helps alleviate the commonly congested storage services. In addition, we show that our system is more resilient to problems like communication breakdowns between computation centres. Moreover, the new architecture is better prepared to deal with demanding scenarios like intense demand of popular data files or remote data processing. More... »

PAGES

235-256

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y

DOI

http://dx.doi.org/10.1007/s10723-016-9374-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029496910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro de Investigaciones Energ\u00e9ticas, Medioambientales y Tecnol\u00f3gicas", 
          "id": "https://www.grid.ac/institutes/grid.420019.e", 
          "name": [
            "CIEMAT, Av. Complutense, 40, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delgado Peris", 
        "givenName": "Antonio", 
        "id": "sg:person.010216517751.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216517751.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro de Investigaciones Energ\u00e9ticas, Medioambientales y Tecnol\u00f3gicas", 
          "id": "https://www.grid.ac/institutes/grid.420019.e", 
          "name": [
            "CIEMAT, Av. Complutense, 40, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hern\u00e1ndez", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.010002516754.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010002516754.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Facultad de Inform\u00e1tica, Universidad Complutense de Madrid (UCM), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huedo", 
        "givenName": "Eduardo", 
        "id": "sg:person.016337316055.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337316055.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1742-6596/396/3/032071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000969964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77442-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003209341", 
          "https://doi.org/10.1007/978-3-540-77442-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77442-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003209341", 
          "https://doi.org/10.1007/978-3-540-77442-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/513/4/042021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008703332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/119/6/062040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018577916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/119/6/062007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020917846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10723-007-9086-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023025645", 
          "https://doi.org/10.1007/s10723-007-9086-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpe.938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024511297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10723-010-9175-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025964365", 
          "https://doi.org/10.1007/s10723-010-9175-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026434267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/331/6/062002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027970805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/664/2/022025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029037673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/664/6/062014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029668912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24679-4_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533129", 
          "https://doi.org/10.1007/978-3-540-24679-4_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24679-4_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533129", 
          "https://doi.org/10.1007/978-3-540-24679-4_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10723-010-9176-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038102363", 
          "https://doi.org/10.1007/s10723-010-9176-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45748-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040097069", 
          "https://doi.org/10.1007/3-540-45748-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45748-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040097069", 
          "https://doi.org/10.1007/3-540-45748-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(03)00462-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040970029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/119/6/062044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041000934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/396/3/032055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041900409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/331/6/062031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043823362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/119/6/062036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044374793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36180-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046565982", 
          "https://doi.org/10.1007/3-540-36180-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36180-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046565982", 
          "https://doi.org/10.1007/3-540-36180-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/664/6/062031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047457951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050544448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2008.924087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061734998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2011.2146276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061736256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msst.2010.5496972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093471633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpp.2005.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093961297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hpcsim.2014.6903678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094091255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/e-science.2007.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095423975"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Pull-based overlays are used in some of today\u2019s largest computational grids. Job agents are submitted to resources with the duty of retrieving real workload from a central queue at runtime and executing it. This model helps overcome the problems of direct job submission in the highly complex grid environments, namely, heterogeneity, imprecise status information, relatively high failure rates and slow adaptation to changes of grid conditions or user priorities. This article presents a distributed scheduling architecture for such late-binding overlays. In this architecture, execution nodes share a distributed hash table and cooperatively perform job assignment. As our experiments prove, scalability problems of centralized matching are avoided, achieving low and predictable scheduling overheads even for execution of large workflows, and total turnaround times are improved. This is in line with the predictions of a theoretical model of grid workflow execution that the article also discusses. Scalability makes fine-grained scheduling possible and enables new functionalities, like a distributed data cache shared by the execution nodes, which helps alleviate the commonly congested storage services. In addition, we show that our system is more resilient to problems like communication breakdowns between computation centres. Moreover, the new architecture is better prepared to deal with demanding scenarios like intense demand of popular data files or remote data processing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10723-016-9374-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136354", 
        "issn": [
          "1570-7873", 
          "1572-9184"
        ], 
        "name": "Journal of Grid Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Distributed Late-binding Scheduling and Cooperative Data Caching", 
    "pagination": "235-256", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c84fb6ebeaaabf807870f677518e57b35eb2330903660cd9038ea49643fdac8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10723-016-9374-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029496910"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10723-016-9374-y", 
      "https://app.dimensions.ai/details/publication/pub.1029496910"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10723-016-9374-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10723-016-9374-y schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Naab9d4913fb64347b7f782257d96ec19
4 schema:citation sg:pub.10.1007/3-540-36180-4_11
5 sg:pub.10.1007/3-540-45748-8_5
6 sg:pub.10.1007/978-3-540-24679-4_65
7 sg:pub.10.1007/978-3-540-77442-6_17
8 sg:pub.10.1007/s10723-007-9086-4
9 sg:pub.10.1007/s10723-010-9175-7
10 sg:pub.10.1007/s10723-010-9176-6
11 https://doi.org/10.1002/cpe.938
12 https://doi.org/10.1016/j.future.2009.07.002
13 https://doi.org/10.1016/j.future.2011.02.002
14 https://doi.org/10.1016/s0168-9002(03)00462-5
15 https://doi.org/10.1088/1742-6596/119/6/062007
16 https://doi.org/10.1088/1742-6596/119/6/062036
17 https://doi.org/10.1088/1742-6596/119/6/062040
18 https://doi.org/10.1088/1742-6596/119/6/062044
19 https://doi.org/10.1088/1742-6596/331/6/062002
20 https://doi.org/10.1088/1742-6596/331/6/062031
21 https://doi.org/10.1088/1742-6596/396/3/032055
22 https://doi.org/10.1088/1742-6596/396/3/032071
23 https://doi.org/10.1088/1742-6596/513/4/042021
24 https://doi.org/10.1088/1742-6596/664/2/022025
25 https://doi.org/10.1088/1742-6596/664/6/062014
26 https://doi.org/10.1088/1742-6596/664/6/062031
27 https://doi.org/10.1109/e-science.2007.56
28 https://doi.org/10.1109/hpcsim.2014.6903678
29 https://doi.org/10.1109/icpp.2005.12
30 https://doi.org/10.1109/msst.2010.5496972
31 https://doi.org/10.1109/tns.2008.924087
32 https://doi.org/10.1109/tns.2011.2146276
33 schema:datePublished 2017-06
34 schema:datePublishedReg 2017-06-01
35 schema:description Pull-based overlays are used in some of today’s largest computational grids. Job agents are submitted to resources with the duty of retrieving real workload from a central queue at runtime and executing it. This model helps overcome the problems of direct job submission in the highly complex grid environments, namely, heterogeneity, imprecise status information, relatively high failure rates and slow adaptation to changes of grid conditions or user priorities. This article presents a distributed scheduling architecture for such late-binding overlays. In this architecture, execution nodes share a distributed hash table and cooperatively perform job assignment. As our experiments prove, scalability problems of centralized matching are avoided, achieving low and predictable scheduling overheads even for execution of large workflows, and total turnaround times are improved. This is in line with the predictions of a theoretical model of grid workflow execution that the article also discusses. Scalability makes fine-grained scheduling possible and enables new functionalities, like a distributed data cache shared by the execution nodes, which helps alleviate the commonly congested storage services. In addition, we show that our system is more resilient to problems like communication breakdowns between computation centres. Moreover, the new architecture is better prepared to deal with demanding scenarios like intense demand of popular data files or remote data processing.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N916f030de3ba47459846c47aa2042904
40 Nc1d5eeeb05514594b5ca55f0064c052a
41 sg:journal.1136354
42 schema:name Distributed Late-binding Scheduling and Cooperative Data Caching
43 schema:pagination 235-256
44 schema:productId N29953604062d40848f033a2d6afb0926
45 N4f4eaece04954cdc911b6eff1cb4eff3
46 Nd622abce965949b79eda800b88c1f874
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029496910
48 https://doi.org/10.1007/s10723-016-9374-y
49 schema:sdDatePublished 2019-04-11T12:36
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N7f82f64e5a044d67b7073fac04fe35a2
52 schema:url https://link.springer.com/10.1007%2Fs10723-016-9374-y
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N29953604062d40848f033a2d6afb0926 schema:name dimensions_id
57 schema:value pub.1029496910
58 rdf:type schema:PropertyValue
59 N4f4eaece04954cdc911b6eff1cb4eff3 schema:name doi
60 schema:value 10.1007/s10723-016-9374-y
61 rdf:type schema:PropertyValue
62 N7f82f64e5a044d67b7073fac04fe35a2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N916f030de3ba47459846c47aa2042904 schema:volumeNumber 15
65 rdf:type schema:PublicationVolume
66 Naab9d4913fb64347b7f782257d96ec19 rdf:first sg:person.010216517751.58
67 rdf:rest Ncbded5e5fa9f4b81976068b5d1215945
68 Nab53ac77a4a44649998f156a1317adde rdf:first sg:person.016337316055.97
69 rdf:rest rdf:nil
70 Nc1d5eeeb05514594b5ca55f0064c052a schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 Ncbded5e5fa9f4b81976068b5d1215945 rdf:first sg:person.010002516754.58
73 rdf:rest Nab53ac77a4a44649998f156a1317adde
74 Nd622abce965949b79eda800b88c1f874 schema:name readcube_id
75 schema:value 8c84fb6ebeaaabf807870f677518e57b35eb2330903660cd9038ea49643fdac8
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information Systems
82 rdf:type schema:DefinedTerm
83 sg:journal.1136354 schema:issn 1570-7873
84 1572-9184
85 schema:name Journal of Grid Computing
86 rdf:type schema:Periodical
87 sg:person.010002516754.58 schema:affiliation https://www.grid.ac/institutes/grid.420019.e
88 schema:familyName Hernández
89 schema:givenName José M.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010002516754.58
91 rdf:type schema:Person
92 sg:person.010216517751.58 schema:affiliation https://www.grid.ac/institutes/grid.420019.e
93 schema:familyName Delgado Peris
94 schema:givenName Antonio
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216517751.58
96 rdf:type schema:Person
97 sg:person.016337316055.97 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
98 schema:familyName Huedo
99 schema:givenName Eduardo
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337316055.97
101 rdf:type schema:Person
102 sg:pub.10.1007/3-540-36180-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046565982
103 https://doi.org/10.1007/3-540-36180-4_11
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/3-540-45748-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040097069
106 https://doi.org/10.1007/3-540-45748-8_5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-540-24679-4_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533129
109 https://doi.org/10.1007/978-3-540-24679-4_65
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-540-77442-6_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003209341
112 https://doi.org/10.1007/978-3-540-77442-6_17
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10723-007-9086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023025645
115 https://doi.org/10.1007/s10723-007-9086-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10723-010-9175-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025964365
118 https://doi.org/10.1007/s10723-010-9175-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10723-010-9176-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038102363
121 https://doi.org/10.1007/s10723-010-9176-6
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/cpe.938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024511297
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.future.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026434267
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.future.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050544448
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0168-9002(03)00462-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040970029
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1742-6596/119/6/062007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020917846
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/1742-6596/119/6/062036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044374793
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/1742-6596/119/6/062040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018577916
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/1742-6596/119/6/062044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041000934
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/1742-6596/331/6/062002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027970805
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/1742-6596/331/6/062031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043823362
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/1742-6596/396/3/032055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041900409
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/1742-6596/396/3/032071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000969964
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/1742-6596/513/4/042021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703332
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/1742-6596/664/2/022025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037673
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/1742-6596/664/6/062014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029668912
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/1742-6596/664/6/062031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047457951
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/e-science.2007.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095423975
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/hpcsim.2014.6903678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094091255
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icpp.2005.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093961297
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/msst.2010.5496972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093471633
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tns.2008.924087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061734998
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tns.2011.2146276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061736256
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.420019.e schema:alternateName Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
168 schema:name CIEMAT, Av. Complutense, 40, 28040, Madrid, Spain
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
171 schema:name Facultad de Informática, Universidad Complutense de Madrid (UCM), Madrid, Spain
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...