Distributed Late-binding Scheduling and Cooperative Data Caching View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Antonio Delgado Peris, José M. Hernández, Eduardo Huedo

ABSTRACT

Pull-based overlays are used in some of today’s largest computational grids. Job agents are submitted to resources with the duty of retrieving real workload from a central queue at runtime and executing it. This model helps overcome the problems of direct job submission in the highly complex grid environments, namely, heterogeneity, imprecise status information, relatively high failure rates and slow adaptation to changes of grid conditions or user priorities. This article presents a distributed scheduling architecture for such late-binding overlays. In this architecture, execution nodes share a distributed hash table and cooperatively perform job assignment. As our experiments prove, scalability problems of centralized matching are avoided, achieving low and predictable scheduling overheads even for execution of large workflows, and total turnaround times are improved. This is in line with the predictions of a theoretical model of grid workflow execution that the article also discusses. Scalability makes fine-grained scheduling possible and enables new functionalities, like a distributed data cache shared by the execution nodes, which helps alleviate the commonly congested storage services. In addition, we show that our system is more resilient to problems like communication breakdowns between computation centres. Moreover, the new architecture is better prepared to deal with demanding scenarios like intense demand of popular data files or remote data processing. More... »

PAGES

235-256

References to SciGraph publications

  • 2004. A Peer-to-Peer Approach to Task Scheduling in Computation Grid in GRID AND COOPERATIVE COMPUTING
  • 2011-06. A Science Driven Production Cyberinfrastructure—the Open Science Grid in JOURNAL OF GRID COMPUTING
  • 2008. Hierarchical Master-Worker Skeletons in PRACTICAL ASPECTS OF DECLARATIVE LANGUAGES
  • 2008-03. Scheduling for Responsive Grids in JOURNAL OF GRID COMPUTING
  • 2002-10-10. Kademlia: A Peer-to-Peer Information System Based on the XOR Metric in PEER-TO-PEER SYSTEMS
  • 2002-11-27. Practical Heterogeneous Placeholder Scheduling in Overlay Metacomputers: Early Experiences in JOB SCHEDULING STRATEGIES FOR PARALLEL PROCESSING
  • 2011-03. Belle-DIRAC Setup for Using Amazon Elastic Compute Cloud in JOURNAL OF GRID COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y

    DOI

    http://dx.doi.org/10.1007/s10723-016-9374-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029496910


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centro de Investigaciones Energ\u00e9ticas, Medioambientales y Tecnol\u00f3gicas", 
              "id": "https://www.grid.ac/institutes/grid.420019.e", 
              "name": [
                "CIEMAT, Av. Complutense, 40, 28040, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Delgado Peris", 
            "givenName": "Antonio", 
            "id": "sg:person.010216517751.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216517751.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro de Investigaciones Energ\u00e9ticas, Medioambientales y Tecnol\u00f3gicas", 
              "id": "https://www.grid.ac/institutes/grid.420019.e", 
              "name": [
                "CIEMAT, Av. Complutense, 40, 28040, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hern\u00e1ndez", 
            "givenName": "Jos\u00e9 M.", 
            "id": "sg:person.010002516754.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010002516754.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Complutense University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.4795.f", 
              "name": [
                "Facultad de Inform\u00e1tica, Universidad Complutense de Madrid (UCM), Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huedo", 
            "givenName": "Eduardo", 
            "id": "sg:person.016337316055.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337316055.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/1742-6596/396/3/032071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000969964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77442-6_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003209341", 
              "https://doi.org/10.1007/978-3-540-77442-6_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77442-6_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003209341", 
              "https://doi.org/10.1007/978-3-540-77442-6_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/513/4/042021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008703332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/119/6/062040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018577916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/119/6/062007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020917846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10723-007-9086-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023025645", 
              "https://doi.org/10.1007/s10723-007-9086-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpe.938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024511297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10723-010-9175-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025964365", 
              "https://doi.org/10.1007/s10723-010-9175-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2009.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026434267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/331/6/062002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027970805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/664/2/022025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029037673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/664/6/062014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029668912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24679-4_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031533129", 
              "https://doi.org/10.1007/978-3-540-24679-4_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24679-4_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031533129", 
              "https://doi.org/10.1007/978-3-540-24679-4_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10723-010-9176-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038102363", 
              "https://doi.org/10.1007/s10723-010-9176-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45748-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040097069", 
              "https://doi.org/10.1007/3-540-45748-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45748-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040097069", 
              "https://doi.org/10.1007/3-540-45748-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9002(03)00462-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040970029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/119/6/062044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041000934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/396/3/032055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041900409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/331/6/062031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043823362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/119/6/062036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044374793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36180-4_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046565982", 
              "https://doi.org/10.1007/3-540-36180-4_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36180-4_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046565982", 
              "https://doi.org/10.1007/3-540-36180-4_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/664/6/062031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047457951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2011.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050544448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tns.2008.924087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061734998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tns.2011.2146276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061736256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msst.2010.5496972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093471633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpp.2005.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093961297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/hpcsim.2014.6903678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094091255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/e-science.2007.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095423975"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "Pull-based overlays are used in some of today\u2019s largest computational grids. Job agents are submitted to resources with the duty of retrieving real workload from a central queue at runtime and executing it. This model helps overcome the problems of direct job submission in the highly complex grid environments, namely, heterogeneity, imprecise status information, relatively high failure rates and slow adaptation to changes of grid conditions or user priorities. This article presents a distributed scheduling architecture for such late-binding overlays. In this architecture, execution nodes share a distributed hash table and cooperatively perform job assignment. As our experiments prove, scalability problems of centralized matching are avoided, achieving low and predictable scheduling overheads even for execution of large workflows, and total turnaround times are improved. This is in line with the predictions of a theoretical model of grid workflow execution that the article also discusses. Scalability makes fine-grained scheduling possible and enables new functionalities, like a distributed data cache shared by the execution nodes, which helps alleviate the commonly congested storage services. In addition, we show that our system is more resilient to problems like communication breakdowns between computation centres. Moreover, the new architecture is better prepared to deal with demanding scenarios like intense demand of popular data files or remote data processing.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10723-016-9374-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136354", 
            "issn": [
              "1570-7873", 
              "1572-9184"
            ], 
            "name": "Journal of Grid Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Distributed Late-binding Scheduling and Cooperative Data Caching", 
        "pagination": "235-256", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8c84fb6ebeaaabf807870f677518e57b35eb2330903660cd9038ea49643fdac8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10723-016-9374-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029496910"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10723-016-9374-y", 
          "https://app.dimensions.ai/details/publication/pub.1029496910"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10723-016-9374-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10723-016-9374-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10723-016-9374-y schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nc67387196520414fabbc45192baf1cef
    4 schema:citation sg:pub.10.1007/3-540-36180-4_11
    5 sg:pub.10.1007/3-540-45748-8_5
    6 sg:pub.10.1007/978-3-540-24679-4_65
    7 sg:pub.10.1007/978-3-540-77442-6_17
    8 sg:pub.10.1007/s10723-007-9086-4
    9 sg:pub.10.1007/s10723-010-9175-7
    10 sg:pub.10.1007/s10723-010-9176-6
    11 https://doi.org/10.1002/cpe.938
    12 https://doi.org/10.1016/j.future.2009.07.002
    13 https://doi.org/10.1016/j.future.2011.02.002
    14 https://doi.org/10.1016/s0168-9002(03)00462-5
    15 https://doi.org/10.1088/1742-6596/119/6/062007
    16 https://doi.org/10.1088/1742-6596/119/6/062036
    17 https://doi.org/10.1088/1742-6596/119/6/062040
    18 https://doi.org/10.1088/1742-6596/119/6/062044
    19 https://doi.org/10.1088/1742-6596/331/6/062002
    20 https://doi.org/10.1088/1742-6596/331/6/062031
    21 https://doi.org/10.1088/1742-6596/396/3/032055
    22 https://doi.org/10.1088/1742-6596/396/3/032071
    23 https://doi.org/10.1088/1742-6596/513/4/042021
    24 https://doi.org/10.1088/1742-6596/664/2/022025
    25 https://doi.org/10.1088/1742-6596/664/6/062014
    26 https://doi.org/10.1088/1742-6596/664/6/062031
    27 https://doi.org/10.1109/e-science.2007.56
    28 https://doi.org/10.1109/hpcsim.2014.6903678
    29 https://doi.org/10.1109/icpp.2005.12
    30 https://doi.org/10.1109/msst.2010.5496972
    31 https://doi.org/10.1109/tns.2008.924087
    32 https://doi.org/10.1109/tns.2011.2146276
    33 schema:datePublished 2017-06
    34 schema:datePublishedReg 2017-06-01
    35 schema:description Pull-based overlays are used in some of today’s largest computational grids. Job agents are submitted to resources with the duty of retrieving real workload from a central queue at runtime and executing it. This model helps overcome the problems of direct job submission in the highly complex grid environments, namely, heterogeneity, imprecise status information, relatively high failure rates and slow adaptation to changes of grid conditions or user priorities. This article presents a distributed scheduling architecture for such late-binding overlays. In this architecture, execution nodes share a distributed hash table and cooperatively perform job assignment. As our experiments prove, scalability problems of centralized matching are avoided, achieving low and predictable scheduling overheads even for execution of large workflows, and total turnaround times are improved. This is in line with the predictions of a theoretical model of grid workflow execution that the article also discusses. Scalability makes fine-grained scheduling possible and enables new functionalities, like a distributed data cache shared by the execution nodes, which helps alleviate the commonly congested storage services. In addition, we show that our system is more resilient to problems like communication breakdowns between computation centres. Moreover, the new architecture is better prepared to deal with demanding scenarios like intense demand of popular data files or remote data processing.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N2018ecba88a7448f930ca5723aa125ee
    40 Nf10b24eb56fb4562a30b9802cd79fbb0
    41 sg:journal.1136354
    42 schema:name Distributed Late-binding Scheduling and Cooperative Data Caching
    43 schema:pagination 235-256
    44 schema:productId N9d89a75ae8824b59b5b0c0296ea49480
    45 Nd62449925abe4014bafcf273c194c20d
    46 Ne4202a483ae9488887fa3a28daf16c29
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029496910
    48 https://doi.org/10.1007/s10723-016-9374-y
    49 schema:sdDatePublished 2019-04-11T12:36
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N46fd3c13c92942b09c82cb514d57fff0
    52 schema:url https://link.springer.com/10.1007%2Fs10723-016-9374-y
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N1344b5f028c64569af940a50d6436020 rdf:first sg:person.010002516754.58
    57 rdf:rest Nb89f805b42df42fca2fce66b70f77dda
    58 N2018ecba88a7448f930ca5723aa125ee schema:volumeNumber 15
    59 rdf:type schema:PublicationVolume
    60 N46fd3c13c92942b09c82cb514d57fff0 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N9d89a75ae8824b59b5b0c0296ea49480 schema:name doi
    63 schema:value 10.1007/s10723-016-9374-y
    64 rdf:type schema:PropertyValue
    65 Nb89f805b42df42fca2fce66b70f77dda rdf:first sg:person.016337316055.97
    66 rdf:rest rdf:nil
    67 Nc67387196520414fabbc45192baf1cef rdf:first sg:person.010216517751.58
    68 rdf:rest N1344b5f028c64569af940a50d6436020
    69 Nd62449925abe4014bafcf273c194c20d schema:name dimensions_id
    70 schema:value pub.1029496910
    71 rdf:type schema:PropertyValue
    72 Ne4202a483ae9488887fa3a28daf16c29 schema:name readcube_id
    73 schema:value 8c84fb6ebeaaabf807870f677518e57b35eb2330903660cd9038ea49643fdac8
    74 rdf:type schema:PropertyValue
    75 Nf10b24eb56fb4562a30b9802cd79fbb0 schema:issueNumber 2
    76 rdf:type schema:PublicationIssue
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information Systems
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136354 schema:issn 1570-7873
    84 1572-9184
    85 schema:name Journal of Grid Computing
    86 rdf:type schema:Periodical
    87 sg:person.010002516754.58 schema:affiliation https://www.grid.ac/institutes/grid.420019.e
    88 schema:familyName Hernández
    89 schema:givenName José M.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010002516754.58
    91 rdf:type schema:Person
    92 sg:person.010216517751.58 schema:affiliation https://www.grid.ac/institutes/grid.420019.e
    93 schema:familyName Delgado Peris
    94 schema:givenName Antonio
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216517751.58
    96 rdf:type schema:Person
    97 sg:person.016337316055.97 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
    98 schema:familyName Huedo
    99 schema:givenName Eduardo
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337316055.97
    101 rdf:type schema:Person
    102 sg:pub.10.1007/3-540-36180-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046565982
    103 https://doi.org/10.1007/3-540-36180-4_11
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/3-540-45748-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040097069
    106 https://doi.org/10.1007/3-540-45748-8_5
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-540-24679-4_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533129
    109 https://doi.org/10.1007/978-3-540-24679-4_65
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-540-77442-6_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003209341
    112 https://doi.org/10.1007/978-3-540-77442-6_17
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10723-007-9086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023025645
    115 https://doi.org/10.1007/s10723-007-9086-4
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10723-010-9175-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025964365
    118 https://doi.org/10.1007/s10723-010-9175-7
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10723-010-9176-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038102363
    121 https://doi.org/10.1007/s10723-010-9176-6
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1002/cpe.938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024511297
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.future.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026434267
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.future.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050544448
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/s0168-9002(03)00462-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040970029
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1088/1742-6596/119/6/062007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020917846
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1088/1742-6596/119/6/062036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044374793
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1088/1742-6596/119/6/062040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018577916
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1088/1742-6596/119/6/062044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041000934
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1088/1742-6596/331/6/062002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027970805
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1088/1742-6596/331/6/062031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043823362
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1088/1742-6596/396/3/032055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041900409
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1088/1742-6596/396/3/032071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000969964
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/1742-6596/513/4/042021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703332
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/1742-6596/664/2/022025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037673
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1088/1742-6596/664/6/062014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029668912
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1088/1742-6596/664/6/062031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047457951
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/e-science.2007.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095423975
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/hpcsim.2014.6903678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094091255
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/icpp.2005.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093961297
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/msst.2010.5496972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093471633
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tns.2008.924087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061734998
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tns.2011.2146276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061736256
    166 rdf:type schema:CreativeWork
    167 https://www.grid.ac/institutes/grid.420019.e schema:alternateName Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
    168 schema:name CIEMAT, Av. Complutense, 40, 28040, Madrid, Spain
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
    171 schema:name Facultad de Informática, Universidad Complutense de Madrid (UCM), Madrid, Spain
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...