Enhancing Regression Models for Complex Systems Using Evolutionary Techniques for Feature Engineering View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Patricia Arroba, José L. Risco-Martín, Marina Zapater, José M. Moya, José L. Ayala

ABSTRACT

This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer’s expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98 %. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics. More... »

PAGES

409-423

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10723-014-9313-8

DOI

http://dx.doi.org/10.1007/s10723-014-9313-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031823960


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Electronic Engineering Department, Technical University of Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arroba", 
        "givenName": "Patricia", 
        "id": "sg:person.010703111426.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703111426.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "DACYA, Complutense University of Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Risco-Mart\u00edn", 
        "givenName": "Jos\u00e9 L.", 
        "id": "sg:person.014760327645.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014760327645.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CEI Campus Moncloa UCM-UPM, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zapater", 
        "givenName": "Marina", 
        "id": "sg:person.01246611531.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246611531.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Electronic Engineering Department, Technical University of Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "DACYA, Complutense University of Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayala", 
        "givenName": "Jos\u00e9 L.", 
        "id": "sg:person.014444546703.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014444546703.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0055930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003842004", 
          "https://doi.org/10.1007/bfb0055930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/937503.937505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008740328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0164-1212(99)00062-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009829795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2318857.2254778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010820971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1186736.1186737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019980146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10710-012-9171-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021886489", 
          "https://doi.org/10.1007/s10710-012-9171-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-008-9098-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022748097", 
          "https://doi.org/10.1007/s11047-008-9098-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-6562-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042737163", 
          "https://doi.org/10.1007/978-1-4419-6562-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-6562-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042737163", 
          "https://doi.org/10.1007/978-1-4419-6562-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/bxp080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059480063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.585888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.942529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.926486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2005.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094795123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2002.10017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095180423"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer\u2019s expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98 %. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10723-014-9313-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136354", 
        "issn": [
          "1570-7873", 
          "1572-9184"
        ], 
        "name": "Journal of Grid Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Enhancing Regression Models for Complex Systems Using Evolutionary Techniques for Feature Engineering", 
    "pagination": "409-423", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9799fb8fce02663307eef017c36a6a35023a64239d45c938d00c9c85b7a90727"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10723-014-9313-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031823960"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10723-014-9313-8", 
      "https://app.dimensions.ai/details/publication/pub.1031823960"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000533.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10723-014-9313-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10723-014-9313-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10723-014-9313-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10723-014-9313-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10723-014-9313-8'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10723-014-9313-8 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N28124fffe4eb43d38e2326064e5b3d9c
4 schema:citation sg:pub.10.1007/978-1-4419-6562-2
5 sg:pub.10.1007/bfb0055930
6 sg:pub.10.1007/s10710-012-9171-8
7 sg:pub.10.1007/s11047-008-9098-4
8 https://doi.org/10.1016/s0164-1212(99)00062-x
9 https://doi.org/10.1093/comjnl/bxp080
10 https://doi.org/10.1109/4235.585888
11 https://doi.org/10.1109/4235.942529
12 https://doi.org/10.1109/sc.2002.10017
13 https://doi.org/10.1109/sc.2005.57
14 https://doi.org/10.1109/tevc.2008.926486
15 https://doi.org/10.1145/1186736.1186737
16 https://doi.org/10.1145/2318857.2254778
17 https://doi.org/10.1145/937503.937505
18 schema:datePublished 2015-09
19 schema:datePublishedReg 2015-09-01
20 schema:description This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer’s expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98 %. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N8c5a51ba6e7449128f4f35045ef3126f
25 Nf55ff3efcc2745d5b21e42ab830d5a3e
26 sg:journal.1136354
27 schema:name Enhancing Regression Models for Complex Systems Using Evolutionary Techniques for Feature Engineering
28 schema:pagination 409-423
29 schema:productId Na2c713d949d145a1a4980ef91005df20
30 Nc5d604bdfd1f44b98fcf78476c646a52
31 Nce31a6c8e8244a0ab63d34d88895f3f9
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031823960
33 https://doi.org/10.1007/s10723-014-9313-8
34 schema:sdDatePublished 2019-04-11T01:11
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N1bfe76665ada45a291380eb0ae3b26a8
37 schema:url http://link.springer.com/10.1007%2Fs10723-014-9313-8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1bfe76665ada45a291380eb0ae3b26a8 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N1faf80e81fd04cfda3bd102ea84669b5 rdf:first sg:person.014760327645.95
44 rdf:rest N596dbfcfb06943dbafec8d972962c0d3
45 N2281daf13a1a4f9f938fcb7762e5f303 rdf:first sg:person.014444546703.69
46 rdf:rest rdf:nil
47 N28124fffe4eb43d38e2326064e5b3d9c rdf:first sg:person.010703111426.38
48 rdf:rest N1faf80e81fd04cfda3bd102ea84669b5
49 N596dbfcfb06943dbafec8d972962c0d3 rdf:first sg:person.01246611531.48
50 rdf:rest Na581175092334859bca2bb372b9dd6e8
51 N8c5a51ba6e7449128f4f35045ef3126f schema:volumeNumber 13
52 rdf:type schema:PublicationVolume
53 Na2c713d949d145a1a4980ef91005df20 schema:name doi
54 schema:value 10.1007/s10723-014-9313-8
55 rdf:type schema:PropertyValue
56 Na581175092334859bca2bb372b9dd6e8 rdf:first sg:person.07662217004.56
57 rdf:rest N2281daf13a1a4f9f938fcb7762e5f303
58 Nb39cef63cb174e5680d2f4f2193d7dd1 schema:name CEI Campus Moncloa UCM-UPM, 28040, Madrid, Spain
59 rdf:type schema:Organization
60 Nc5d604bdfd1f44b98fcf78476c646a52 schema:name readcube_id
61 schema:value 9799fb8fce02663307eef017c36a6a35023a64239d45c938d00c9c85b7a90727
62 rdf:type schema:PropertyValue
63 Nce31a6c8e8244a0ab63d34d88895f3f9 schema:name dimensions_id
64 schema:value pub.1031823960
65 rdf:type schema:PropertyValue
66 Nf55ff3efcc2745d5b21e42ab830d5a3e schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
72 schema:name Computer Software
73 rdf:type schema:DefinedTerm
74 sg:journal.1136354 schema:issn 1570-7873
75 1572-9184
76 schema:name Journal of Grid Computing
77 rdf:type schema:Periodical
78 sg:person.010703111426.38 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
79 schema:familyName Arroba
80 schema:givenName Patricia
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703111426.38
82 rdf:type schema:Person
83 sg:person.01246611531.48 schema:affiliation Nb39cef63cb174e5680d2f4f2193d7dd1
84 schema:familyName Zapater
85 schema:givenName Marina
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246611531.48
87 rdf:type schema:Person
88 sg:person.014444546703.69 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
89 schema:familyName Ayala
90 schema:givenName José L.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014444546703.69
92 rdf:type schema:Person
93 sg:person.014760327645.95 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
94 schema:familyName Risco-Martín
95 schema:givenName José L.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014760327645.95
97 rdf:type schema:Person
98 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
99 schema:familyName Moya
100 schema:givenName José M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
102 rdf:type schema:Person
103 sg:pub.10.1007/978-1-4419-6562-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042737163
104 https://doi.org/10.1007/978-1-4419-6562-2
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bfb0055930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003842004
107 https://doi.org/10.1007/bfb0055930
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10710-012-9171-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021886489
110 https://doi.org/10.1007/s10710-012-9171-8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11047-008-9098-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022748097
113 https://doi.org/10.1007/s11047-008-9098-4
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0164-1212(99)00062-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009829795
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1093/comjnl/bxp080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059480063
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/4235.585888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171978
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/4235.942529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172092
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/sc.2002.10017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095180423
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/sc.2005.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094795123
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tevc.2008.926486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604891
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1186736.1186737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019980146
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/2318857.2254778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010820971
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/937503.937505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008740328
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
136 schema:name DACYA, Complutense University of Madrid, 28040, Madrid, Spain
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
139 schema:name Electronic Engineering Department, Technical University of Madrid, 28040, Madrid, Spain
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...