Classification of Peruvian highland maize races using plant traits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

R. Ortiz, José Crossa, Jorge Franco, Ricardo Sevilla, Juan Burgueño

ABSTRACT

The maize of Latin America, with its enormous diversity, has played an important role in the development of modern maize cultivars of the American continent. Peruvian highland maize shows a high degree of variation stemming from its history of cultivation by Andean farmers. Multivariate statistical methods for classifying accessions have become powerful tools for classifying genetic resources conservation and the formation of core subsets. This study has two objectives: (1) to use a numerical classification strategy for classifying eight Peruvian highland races of maize based on six vegetative traits evaluated in two years and (2) to compare this classification with the existing racial classification. The numerical classification maintained the main structure of the eight races, but reclassified parts of the races into new groups (Gi). The new groups are more separated and well defined with a decreasing accession within group × environment interaction. Most of the accessions from G1 are from Cusco Gigante, all of the accessions from G3 (except one) are from Confite Morocho, and all of the accessions from G7 are from Chullpi. Group G2 has four accessions from Huayleño and four accessions from Paro, whereas G4 has four accessions from Huayleño and five accessions from San Geronimo. Group G5 has accessions from four races, and G6 and G8 formed small groups with two and one accession each, respectively. These groups can be used for forming core subsets for the purpose of germplasm enhancement and assembling gene pools for further breeding. More... »

PAGES

151-162

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10722-007-9224-7

DOI

http://dx.doi.org/10.1007/s10722-007-9224-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011296072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ortiz", 
        "givenName": "R.", 
        "id": "sg:person.01210706445.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210706445.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Republic", 
          "id": "https://www.grid.ac/institutes/grid.11630.35", 
          "name": [
            "Facultad de Agronomia, Universidad de la Republica Oriental del Uruguay, Avd. Garzon 780, CP 12900, Montevideo, Uruguay"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franco", 
        "givenName": "Jorge", 
        "id": "sg:person.01064101577.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064101577.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agrarian University", 
          "id": "https://www.grid.ac/institutes/grid.10599.34", 
          "name": [
            "Universidad Nacional Agraria, Av. La Universidad s/n, La Molina, Lima, Peru"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sevilla", 
        "givenName": "Ricardo", 
        "id": "sg:person.014212360445.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014212360445.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "Juan", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:euph.0000040500.86428.e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000214406", 
          "https://doi.org/10.1023/b:euph.0000040500.86428.e8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012945757", 
          "https://doi.org/10.1007/bf02294245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012945757", 
          "https://doi.org/10.1007/bf02294245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00161577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038375451", 
          "https://doi.org/10.1007/bf00161577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327906mbr1602_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043804925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1963.10500845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/65.1.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177705052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1998.0011183x003800050037x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1998.0011183x003800060045x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1999.0011183x003900010040x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2003.0718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2003.1249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069028047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2394331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069909379"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "The maize of Latin America, with its enormous diversity, has played an important role in the development of modern maize cultivars of the American continent. Peruvian highland maize shows a high degree of variation stemming from its history of cultivation by Andean farmers. Multivariate statistical methods for classifying accessions have become powerful tools for classifying genetic resources conservation and the formation of core subsets. This study has two objectives: (1) to use a numerical classification strategy for classifying eight Peruvian highland races of maize based on six vegetative traits evaluated in two years and (2) to compare this classification with the existing racial classification. The numerical classification maintained the main structure of the eight races, but reclassified parts of the races into new groups (Gi). The new groups are more separated and well defined with a decreasing accession within group \u00d7 environment interaction. Most of the accessions from G1 are from Cusco Gigante, all of the accessions from G3 (except one) are from Confite Morocho, and all of the accessions from G7 are from Chullpi. Group G2 has four accessions from Huayle\u00f1o and four accessions from Paro, whereas G4 has four accessions from Huayle\u00f1o and five accessions from San Geronimo. Group G5 has accessions from four races, and G6 and G8 formed small groups with two and one accession each, respectively. These groups can be used for forming core subsets for the purpose of germplasm enhancement and assembling gene pools for further breeding.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10722-007-9224-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023035", 
        "issn": [
          "0925-9864", 
          "1573-5109"
        ], 
        "name": "Genetic Resources and Crop Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Classification of Peruvian highland maize races using plant traits", 
    "pagination": "151-162", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "35d1c1f5afce012f6c3c8eca93fcadadc883f04ab78f3286b04bbfa50032e703"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10722-007-9224-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011296072"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10722-007-9224-7", 
      "https://app.dimensions.ai/details/publication/pub.1011296072"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71712_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10722-007-9224-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10722-007-9224-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10722-007-9224-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10722-007-9224-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10722-007-9224-7'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10722-007-9224-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N164d56d39d0f4fe58d4c8a1b04358ec3
4 schema:citation sg:pub.10.1007/bf00161577
5 sg:pub.10.1007/bf02294245
6 sg:pub.10.1023/b:euph.0000040500.86428.e8
7 https://doi.org/10.1080/01621459.1963.10500845
8 https://doi.org/10.1093/biomet/65.1.31
9 https://doi.org/10.1207/s15327906mbr1602_3
10 https://doi.org/10.1214/aoms/1177705052
11 https://doi.org/10.2135/cropsci1998.0011183x003800050037x
12 https://doi.org/10.2135/cropsci1998.0011183x003800060045x
13 https://doi.org/10.2135/cropsci1999.0011183x003900010040x
14 https://doi.org/10.2135/cropsci2003.0718
15 https://doi.org/10.2135/cropsci2003.1249
16 https://doi.org/10.2307/2394331
17 schema:datePublished 2008-02
18 schema:datePublishedReg 2008-02-01
19 schema:description The maize of Latin America, with its enormous diversity, has played an important role in the development of modern maize cultivars of the American continent. Peruvian highland maize shows a high degree of variation stemming from its history of cultivation by Andean farmers. Multivariate statistical methods for classifying accessions have become powerful tools for classifying genetic resources conservation and the formation of core subsets. This study has two objectives: (1) to use a numerical classification strategy for classifying eight Peruvian highland races of maize based on six vegetative traits evaluated in two years and (2) to compare this classification with the existing racial classification. The numerical classification maintained the main structure of the eight races, but reclassified parts of the races into new groups (Gi). The new groups are more separated and well defined with a decreasing accession within group × environment interaction. Most of the accessions from G1 are from Cusco Gigante, all of the accessions from G3 (except one) are from Confite Morocho, and all of the accessions from G7 are from Chullpi. Group G2 has four accessions from Huayleño and four accessions from Paro, whereas G4 has four accessions from Huayleño and five accessions from San Geronimo. Group G5 has accessions from four races, and G6 and G8 formed small groups with two and one accession each, respectively. These groups can be used for forming core subsets for the purpose of germplasm enhancement and assembling gene pools for further breeding.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N3cd7f8e3c77f408b976317a4852af5e2
24 Na268f16ee8444d369f5e92dc0fdfbce6
25 sg:journal.1023035
26 schema:name Classification of Peruvian highland maize races using plant traits
27 schema:pagination 151-162
28 schema:productId N2df44613604f48af8867bd1dbf100e45
29 N3a21e3731e3d41ed8c6c43cf213f0560
30 N82e1c750b69b4b2faff1a518a1d20479
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011296072
32 https://doi.org/10.1007/s10722-007-9224-7
33 schema:sdDatePublished 2019-04-11T13:01
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nf0bf1b0a859e4c24a4eb2908f98c8a31
36 schema:url http://link.springer.com/10.1007%2Fs10722-007-9224-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N164d56d39d0f4fe58d4c8a1b04358ec3 rdf:first sg:person.01210706445.20
41 rdf:rest Nece27977eafe47f19f536a0c3fe8cf44
42 N2df44613604f48af8867bd1dbf100e45 schema:name doi
43 schema:value 10.1007/s10722-007-9224-7
44 rdf:type schema:PropertyValue
45 N3a21e3731e3d41ed8c6c43cf213f0560 schema:name dimensions_id
46 schema:value pub.1011296072
47 rdf:type schema:PropertyValue
48 N3cd7f8e3c77f408b976317a4852af5e2 schema:volumeNumber 55
49 rdf:type schema:PublicationVolume
50 N46f0f0c8726249498f8173568c880df1 rdf:first sg:person.0733536233.17
51 rdf:rest rdf:nil
52 N82e1c750b69b4b2faff1a518a1d20479 schema:name readcube_id
53 schema:value 35d1c1f5afce012f6c3c8eca93fcadadc883f04ab78f3286b04bbfa50032e703
54 rdf:type schema:PropertyValue
55 Na268f16ee8444d369f5e92dc0fdfbce6 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 Nb64e46d4a2f64bf4b436f49c6d60881b rdf:first sg:person.01064101577.21
58 rdf:rest Nf523febb935840f2a7a21d067420e9ad
59 Nece27977eafe47f19f536a0c3fe8cf44 rdf:first sg:person.01274600533.83
60 rdf:rest Nb64e46d4a2f64bf4b436f49c6d60881b
61 Nf0bf1b0a859e4c24a4eb2908f98c8a31 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nf523febb935840f2a7a21d067420e9ad rdf:first sg:person.014212360445.44
64 rdf:rest N46f0f0c8726249498f8173568c880df1
65 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
66 schema:name Biological Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
69 schema:name Genetics
70 rdf:type schema:DefinedTerm
71 sg:journal.1023035 schema:issn 0925-9864
72 1573-5109
73 schema:name Genetic Resources and Crop Evolution
74 rdf:type schema:Periodical
75 sg:person.01064101577.21 schema:affiliation https://www.grid.ac/institutes/grid.11630.35
76 schema:familyName Franco
77 schema:givenName Jorge
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064101577.21
79 rdf:type schema:Person
80 sg:person.01210706445.20 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
81 schema:familyName Ortiz
82 schema:givenName R.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210706445.20
84 rdf:type schema:Person
85 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
86 schema:familyName Crossa
87 schema:givenName José
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
89 rdf:type schema:Person
90 sg:person.014212360445.44 schema:affiliation https://www.grid.ac/institutes/grid.10599.34
91 schema:familyName Sevilla
92 schema:givenName Ricardo
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014212360445.44
94 rdf:type schema:Person
95 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
96 schema:familyName Burgueño
97 schema:givenName Juan
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00161577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038375451
101 https://doi.org/10.1007/bf00161577
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02294245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012945757
104 https://doi.org/10.1007/bf02294245
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/b:euph.0000040500.86428.e8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000214406
107 https://doi.org/10.1023/b:euph.0000040500.86428.e8
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/01621459.1963.10500845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299788
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1093/biomet/65.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418731
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1207/s15327906mbr1602_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043804925
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1214/aoms/1177705052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400677
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2135/cropsci1998.0011183x003800050037x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026099
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2135/cropsci1998.0011183x003800060045x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026172
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2135/cropsci1999.0011183x003900010040x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026271
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2135/cropsci2003.0718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027956
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2135/cropsci2003.1249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028047
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2307/2394331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069909379
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.10599.34 schema:alternateName National Agrarian University
130 schema:name Universidad Nacional Agraria, Av. La Universidad s/n, La Molina, Lima, Peru
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.11630.35 schema:alternateName University of the Republic
133 schema:name Facultad de Agronomia, Universidad de la Republica Oriental del Uruguay, Avd. Garzon 780, CP 12900, Montevideo, Uruguay
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
136 schema:name International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF, Mexico
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...