Absorption of planar waves in conformal gravity space–time View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hai Huang, Juhua Chen, Yongjiu Wang, Tongsuo Lu

ABSTRACT

Conformal gravity (CG) has attracted considerable interest as a compelling alternative to general relativity. We investigate the massless scalar planar wave scattering in Mannheim–Kazanas (MK) space–time of CG theory. We give different transmission coefficient as parameter γr0 and κr02 changed. Using partial-wave method, we obtain the absorption cross section, we find for larger angular momentum quantum numbers l, the corresponding maximum values of partial absorption cross section are smaller, the smaller of γr0 are, the larger the partial absorption cross section are, while parameter κr02 display the inverse situation. More... »

PAGES

22

References to SciGraph publications

  • 1987-06. Conformal invariance in Weyl gravity in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2011-03. Comprehensive solution to the cosmological constant, zero-point energy, and quantum gravity problems in GENERAL RELATIVITY AND GRAVITATION
  • 1918-09. Reine Infinitesimalgeometrie in MATHEMATISCHE ZEITSCHRIFT
  • 2017-04. Absorption of a Massive Scalar Field by Wormhole Space-Times in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10714-019-2506-5

    DOI

    http://dx.doi.org/10.1007/s10714-019-2506-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111831069


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Guiyang University", 
              "id": "https://www.grid.ac/institutes/grid.464322.5", 
              "name": [
                "College of Mechanical Engineering, Guiyang University, 550005, Guiyang, Guizhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Hai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "College of Physics and Information Science, Hunan Normal University, 410081, Changsha, Hunan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Juhua", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "College of Physics and Information Science, Hunan Normal University, 410081, Changsha, Hunan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yongjiu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tibet University", 
              "id": "https://www.grid.ac/institutes/grid.440680.e", 
              "name": [
                "Cosmic Ray Ministry of Education Key Laboratory, Tibet University, 850012, Lhasa, Tibet, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Tongsuo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevd.71.124020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008337313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.71.124020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008337313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.71.124020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008337313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.104060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011311241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.104060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011311241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ppnp.2005.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011592201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01199420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013957972", 
              "https://doi.org/10.1007/bf01199420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.82.084026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016666211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.82.084026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016666211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.044032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018089085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.044032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018089085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020513660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020513660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00670092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031029306", 
              "https://doi.org/10.1007/bf00670092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00670092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031029306", 
              "https://doi.org/10.1007/bf00670092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2011.09.091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032891860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.121501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033430120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.121501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033430120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-016-3259-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036396349", 
              "https://doi.org/10.1007/s10773-016-3259-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-016-3259-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036396349", 
              "https://doi.org/10.1007/s10773-016-3259-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.121101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.121101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.19193641002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043598229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.124020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044763863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.124020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044763863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.024010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048970678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.024010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048970678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-010-1088-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050569674", 
              "https://doi.org/10.1007/s10714-010-1088-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1664470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057742493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.124008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.124008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.7.2807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.7.2807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.92.024012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060710230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.92.024012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060710230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.95.024004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.95.024004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714935"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Conformal gravity (CG) has attracted considerable interest as a compelling alternative to general relativity. We investigate the massless scalar planar wave scattering in Mannheim\u2013Kazanas (MK) space\u2013time of CG theory. We give different transmission coefficient as parameter \u03b3r0 and \u03bar02 changed. Using partial-wave method, we obtain the absorption cross section, we find for larger angular momentum quantum numbers l, the corresponding maximum values of partial absorption cross section are smaller, the smaller of \u03b3r0 are, the larger the partial absorption cross section are, while parameter \u03bar02 display the inverse situation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10714-019-2506-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052061", 
            "issn": [
              "0001-7701", 
              "1572-9532"
            ], 
            "name": "General Relativity and Gravitation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "name": "Absorption of planar waves in conformal gravity space\u2013time", 
        "pagination": "22", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "daff53bbce3ecc9c6bda3a61025e8dccdf70ec103a5d3388211616d80ba6759a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10714-019-2506-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111831069"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10714-019-2506-5", 
          "https://app.dimensions.ai/details/publication/pub.1111831069"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60339_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10714-019-2506-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10714-019-2506-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10714-019-2506-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10714-019-2506-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10714-019-2506-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    151 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10714-019-2506-5 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Na27e1db6fec14a97a24c220742bb5474
    4 schema:citation sg:pub.10.1007/bf00670092
    5 sg:pub.10.1007/bf01199420
    6 sg:pub.10.1007/s10714-010-1088-z
    7 sg:pub.10.1007/s10773-016-3259-5
    8 https://doi.org/10.1002/andp.19193641002
    9 https://doi.org/10.1016/j.physletb.2011.09.091
    10 https://doi.org/10.1016/j.ppnp.2005.08.001
    11 https://doi.org/10.1063/1.1664470
    12 https://doi.org/10.1103/physrevd.63.124008
    13 https://doi.org/10.1103/physrevd.7.2807
    14 https://doi.org/10.1103/physrevd.71.124020
    15 https://doi.org/10.1103/physrevd.79.064022
    16 https://doi.org/10.1103/physrevd.82.084026
    17 https://doi.org/10.1103/physrevd.83.044032
    18 https://doi.org/10.1103/physrevd.83.121501
    19 https://doi.org/10.1103/physrevd.85.124020
    20 https://doi.org/10.1103/physrevd.86.024010
    21 https://doi.org/10.1103/physrevd.86.104060
    22 https://doi.org/10.1103/physrevd.92.024012
    23 https://doi.org/10.1103/physrevd.95.024004
    24 https://doi.org/10.1103/physrevlett.106.121101
    25 schema:datePublished 2019-02
    26 schema:datePublishedReg 2019-02-01
    27 schema:description Conformal gravity (CG) has attracted considerable interest as a compelling alternative to general relativity. We investigate the massless scalar planar wave scattering in Mannheim–Kazanas (MK) space–time of CG theory. We give different transmission coefficient as parameter γr0 and κr02 changed. Using partial-wave method, we obtain the absorption cross section, we find for larger angular momentum quantum numbers l, the corresponding maximum values of partial absorption cross section are smaller, the smaller of γr0 are, the larger the partial absorption cross section are, while parameter κr02 display the inverse situation.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N4531834ebafa4c09b904663aa9787204
    32 Nba121449db1f4d73859b5486043ca0bd
    33 sg:journal.1052061
    34 schema:name Absorption of planar waves in conformal gravity space–time
    35 schema:pagination 22
    36 schema:productId N27ad8f3cb28347e582d30a64c504ccfc
    37 N34ecc6f3a35a41aab889eb094c0a30da
    38 Na1070bdcd8124cd489455f5ff9f170e8
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111831069
    40 https://doi.org/10.1007/s10714-019-2506-5
    41 schema:sdDatePublished 2019-04-11T11:00
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Nc7f81eb9609d48dc8dda6597b0d2bd31
    44 schema:url https://link.springer.com/10.1007%2Fs10714-019-2506-5
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N12d54692eaa34bfc96d45336226a8b77 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    49 schema:familyName Chen
    50 schema:givenName Juhua
    51 rdf:type schema:Person
    52 N22071e1b5d5841cc996ea27daee7a513 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    53 schema:familyName Wang
    54 schema:givenName Yongjiu
    55 rdf:type schema:Person
    56 N27ad8f3cb28347e582d30a64c504ccfc schema:name readcube_id
    57 schema:value daff53bbce3ecc9c6bda3a61025e8dccdf70ec103a5d3388211616d80ba6759a
    58 rdf:type schema:PropertyValue
    59 N327fbbe5e2d44813a25b68f571218787 rdf:first N12d54692eaa34bfc96d45336226a8b77
    60 rdf:rest Na9250da77a3347b2a01dde1b52d8e93e
    61 N3303259d920e4ea197f952359e4a030a schema:affiliation https://www.grid.ac/institutes/grid.464322.5
    62 schema:familyName Huang
    63 schema:givenName Hai
    64 rdf:type schema:Person
    65 N34ecc6f3a35a41aab889eb094c0a30da schema:name doi
    66 schema:value 10.1007/s10714-019-2506-5
    67 rdf:type schema:PropertyValue
    68 N4531834ebafa4c09b904663aa9787204 schema:issueNumber 2
    69 rdf:type schema:PublicationIssue
    70 N58fdb09ad6a046e4874fbb42ec0a3b94 schema:affiliation https://www.grid.ac/institutes/grid.440680.e
    71 schema:familyName Lu
    72 schema:givenName Tongsuo
    73 rdf:type schema:Person
    74 N85b099d47db847e7b6429b126b0cbbca rdf:first N58fdb09ad6a046e4874fbb42ec0a3b94
    75 rdf:rest rdf:nil
    76 Na1070bdcd8124cd489455f5ff9f170e8 schema:name dimensions_id
    77 schema:value pub.1111831069
    78 rdf:type schema:PropertyValue
    79 Na27e1db6fec14a97a24c220742bb5474 rdf:first N3303259d920e4ea197f952359e4a030a
    80 rdf:rest N327fbbe5e2d44813a25b68f571218787
    81 Na9250da77a3347b2a01dde1b52d8e93e rdf:first N22071e1b5d5841cc996ea27daee7a513
    82 rdf:rest N85b099d47db847e7b6429b126b0cbbca
    83 Nba121449db1f4d73859b5486043ca0bd schema:volumeNumber 51
    84 rdf:type schema:PublicationVolume
    85 Nc7f81eb9609d48dc8dda6597b0d2bd31 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Physical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1052061 schema:issn 0001-7701
    94 1572-9532
    95 schema:name General Relativity and Gravitation
    96 rdf:type schema:Periodical
    97 sg:pub.10.1007/bf00670092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031029306
    98 https://doi.org/10.1007/bf00670092
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf01199420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013957972
    101 https://doi.org/10.1007/bf01199420
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10714-010-1088-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050569674
    104 https://doi.org/10.1007/s10714-010-1088-z
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10773-016-3259-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036396349
    107 https://doi.org/10.1007/s10773-016-3259-5
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/andp.19193641002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043598229
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.physletb.2011.09.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032891860
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.ppnp.2005.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011592201
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1063/1.1664470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742493
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physrevd.63.124008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060705109
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevd.7.2807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060705827
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevd.71.124020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008337313
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevd.79.064022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020513660
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevd.82.084026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016666211
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevd.83.044032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018089085
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevd.83.121501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430120
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevd.85.124020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044763863
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevd.86.024010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048970678
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevd.86.104060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011311241
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.92.024012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060710230
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.95.024004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714935
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.106.121101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040007963
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
    144 schema:name College of Physics and Information Science, Hunan Normal University, 410081, Changsha, Hunan, People’s Republic of China
    145 rdf:type schema:Organization
    146 https://www.grid.ac/institutes/grid.440680.e schema:alternateName Tibet University
    147 schema:name Cosmic Ray Ministry of Education Key Laboratory, Tibet University, 850012, Lhasa, Tibet, People’s Republic of China
    148 rdf:type schema:Organization
    149 https://www.grid.ac/institutes/grid.464322.5 schema:alternateName Guiyang University
    150 schema:name College of Mechanical Engineering, Guiyang University, 550005, Guiyang, Guizhou, People’s Republic of China
    151 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...