From massive gravity to modified general relativity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-07-24

AUTHORS

Günter Scharf

ABSTRACT

Massive gravity which has been constructed from a cohomological formulation of gauge invariance by means of the descent equations is here investigated in the classical limit. Gauge invariance requires a vector-graviton field v coupled to the massive tensor field hμν. In the limit of vanishing graviton mass the v-field does not decouple. On the classical level this leads to a modification of general relativity. The contribution of the v-field to the energy-momentum tensor can be interpreted as dark matter density and pressure. We solve the modified field equations in the simplest spherically symmetric geometry. More... »

PAGES

471-487

References to SciGraph publications

  • 2005-06-02. Massive gravity as a quantum gauge theory in GENERAL RELATIVITY AND GRAVITATION
  • 2007-07-27. Quantum gravitational bremsstrahlung: massless versus massive gravity in GENERAL RELATIVITY AND GRAVITATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10714-009-0864-0

    DOI

    http://dx.doi.org/10.1007/s10714-009-0864-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052976852


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Z\u00fcrich, Winterthurerstr. 190, 8057, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Z\u00fcrich, Winterthurerstr. 190, 8057, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scharf", 
            "givenName": "G\u00fcnter", 
            "id": "sg:person.010155263205.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155263205.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10714-005-0092-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009129316", 
              "https://doi.org/10.1007/s10714-005-0092-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-007-0476-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095347", 
              "https://doi.org/10.1007/s10714-007-0476-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-07-24", 
        "datePublishedReg": "2009-07-24", 
        "description": "Massive gravity which has been constructed from a cohomological formulation of gauge invariance by means of the descent equations is here investigated in the classical limit. Gauge invariance requires a vector-graviton field v coupled to the massive tensor field h\u03bc\u03bd. In the limit of vanishing graviton mass the v-field does not decouple. On the classical level this leads to a modification of general relativity. The contribution of the v-field to the energy-momentum tensor can be interpreted as dark matter density and pressure. We solve the modified field equations in the simplest spherically symmetric geometry.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10714-009-0864-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052061", 
            "issn": [
              "0001-7701", 
              "1572-9532"
            ], 
            "name": "General Relativity and Gravitation", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "keywords": [
          "gravity", 
          "symmetric geometry", 
          "equations", 
          "geometry", 
          "density", 
          "field equations", 
          "limit", 
          "formulation", 
          "pressure", 
          "field V", 
          "energy-momentum tensor", 
          "tensor", 
          "massive gravity", 
          "descent equations", 
          "modification", 
          "means", 
          "mass", 
          "contribution", 
          "invariance", 
          "levels", 
          "graviton mass", 
          "general relativity", 
          "relativity", 
          "gauge invariance", 
          "classical limit", 
          "dark matter density", 
          "V-Fields", 
          "matter density", 
          "classical level", 
          "h\u03bc\u03bd", 
          "cohomological formulation", 
          "vector-graviton field v", 
          "massive tensor field h\u03bc\u03bd", 
          "tensor field h\u03bc\u03bd", 
          "field h\u03bc\u03bd"
        ], 
        "name": "From massive gravity to modified general relativity", 
        "pagination": "471-487", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052976852"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10714-009-0864-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10714-009-0864-0", 
          "https://app.dimensions.ai/details/publication/pub.1052976852"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10714-009-0864-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10714-009-0864-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10714-009-0864-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10714-009-0864-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10714-009-0864-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      22 PREDICATES      62 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10714-009-0864-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf2d200e9e81d4ddabfa6e90329b6705c
    4 schema:citation sg:pub.10.1007/s10714-005-0092-1
    5 sg:pub.10.1007/s10714-007-0476-5
    6 schema:datePublished 2009-07-24
    7 schema:datePublishedReg 2009-07-24
    8 schema:description Massive gravity which has been constructed from a cohomological formulation of gauge invariance by means of the descent equations is here investigated in the classical limit. Gauge invariance requires a vector-graviton field v coupled to the massive tensor field hμν. In the limit of vanishing graviton mass the v-field does not decouple. On the classical level this leads to a modification of general relativity. The contribution of the v-field to the energy-momentum tensor can be interpreted as dark matter density and pressure. We solve the modified field equations in the simplest spherically symmetric geometry.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N47d13be41be24621bf5db31b452563a7
    13 N737ea6c6f5e84740b791300ffaf5729d
    14 sg:journal.1052061
    15 schema:keywords V-Fields
    16 classical level
    17 classical limit
    18 cohomological formulation
    19 contribution
    20 dark matter density
    21 density
    22 descent equations
    23 energy-momentum tensor
    24 equations
    25 field V
    26 field equations
    27 field hμν
    28 formulation
    29 gauge invariance
    30 general relativity
    31 geometry
    32 graviton mass
    33 gravity
    34 hμν
    35 invariance
    36 levels
    37 limit
    38 mass
    39 massive gravity
    40 massive tensor field hμν
    41 matter density
    42 means
    43 modification
    44 pressure
    45 relativity
    46 symmetric geometry
    47 tensor
    48 tensor field hμν
    49 vector-graviton field v
    50 schema:name From massive gravity to modified general relativity
    51 schema:pagination 471-487
    52 schema:productId N50c12daa723a46a8bbaf52974849a95d
    53 N90a6c62416904e7d9a959cc43d97bffb
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052976852
    55 https://doi.org/10.1007/s10714-009-0864-0
    56 schema:sdDatePublished 2022-01-01T18:21
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N1cb2b9fda27f41d281b8d58d24bc450e
    59 schema:url https://doi.org/10.1007/s10714-009-0864-0
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N1cb2b9fda27f41d281b8d58d24bc450e schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N47d13be41be24621bf5db31b452563a7 schema:volumeNumber 42
    66 rdf:type schema:PublicationVolume
    67 N50c12daa723a46a8bbaf52974849a95d schema:name dimensions_id
    68 schema:value pub.1052976852
    69 rdf:type schema:PropertyValue
    70 N737ea6c6f5e84740b791300ffaf5729d schema:issueNumber 3
    71 rdf:type schema:PublicationIssue
    72 N90a6c62416904e7d9a959cc43d97bffb schema:name doi
    73 schema:value 10.1007/s10714-009-0864-0
    74 rdf:type schema:PropertyValue
    75 Nf2d200e9e81d4ddabfa6e90329b6705c rdf:first sg:person.010155263205.30
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1052061 schema:issn 0001-7701
    84 1572-9532
    85 schema:name General Relativity and Gravitation
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.010155263205.30 schema:affiliation grid-institutes:grid.7400.3
    89 schema:familyName Scharf
    90 schema:givenName Günter
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155263205.30
    92 rdf:type schema:Person
    93 sg:pub.10.1007/s10714-005-0092-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009129316
    94 https://doi.org/10.1007/s10714-005-0092-1
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s10714-007-0476-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095347
    97 https://doi.org/10.1007/s10714-007-0476-5
    98 rdf:type schema:CreativeWork
    99 grid-institutes:grid.7400.3 schema:alternateName Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland
    100 schema:name Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...