Partial and complete observables for Hamiltonian constrained systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-11

AUTHORS

B. Dittrich

ABSTRACT

We will pick up the concepts of partial and complete observables introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkhäuser, Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002); Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct Dirac observables in gauge systems. We will generalize these ideas to an arbitrary number of gauge degrees of freedom. Different methods to calculate such Dirac observables are developed. For background independent field theories we will show that partial and complete observables can be related to Kuchař’s Bubble-Time Formalism (J Math Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space of complete observables and also state the Poisson brackets of these functions. Additionally we will investigate, whether it is possible to calculate Dirac observables starting with partially invariant partial observables, for instance functions, which are invariant under the spatial diffeomorphism group. More... »

PAGES

1891-1927

References to SciGraph publications

  • 1993-07. The spin holonomy group in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1992-08. Degeneracy in loop variables in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    General Relativity and Gravitation

    ISSUE

    11

    VOLUME

    39

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10714-007-0495-2

    DOI

    http://dx.doi.org/10.1007/s10714-007-0495-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028112377


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "MPI f. Gravitationsphysik, Albert-Einstein-Institut, Am M\u00fchlenberg 1, 14476, Golm near Potsdam, Germany", 
                "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dittrich", 
            "givenName": "B.", 
            "id": "sg:person.015257074653.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257074653.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0264-9381/23/7/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000517581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/23/7/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000517581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/23/4/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008513984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/23/4/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008513984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s0103-97332005000200016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012828105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/8/10/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017347643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(85)90019-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025404203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02100867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026627352", 
              "https://doi.org/10.1007/bf02100867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02100867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026627352", 
              "https://doi.org/10.1007/bf02100867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.65.124013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038545956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.65.124013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038545956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/24/4/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039814877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511524653.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041525329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/23/22/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048377517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02097393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050559889", 
              "https://doi.org/10.1007/bf02097393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02097393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050559889", 
              "https://doi.org/10.1007/bf02097393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1666050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057744128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1666377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057744450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.160.1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.160.1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.4.955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060697329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.4.955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060697329"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-11", 
        "datePublishedReg": "2007-11-01", 
        "description": "We will pick up the concepts of partial and complete observables introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkh\u00e4user, Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002); Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct Dirac observables in gauge systems. We will generalize these ideas to an arbitrary number of gauge degrees of freedom. Different methods to calculate such Dirac observables are developed. For background independent field theories we will show that partial and complete observables can be related to Kucha\u0159\u2019s Bubble-Time Formalism (J Math Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space of complete observables and also state the Poisson brackets of these functions. Additionally we will investigate, whether it is possible to calculate Dirac observables starting with partially invariant partial observables, for instance functions, which are invariant under the spatial diffeomorphism group.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10714-007-0495-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052061", 
            "issn": [
              "0001-7701", 
              "1572-9532"
            ], 
            "name": "General Relativity and Gravitation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "name": "Partial and complete observables for Hamiltonian constrained systems", 
        "pagination": "1891-1927", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10714-007-0495-2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "85eb9411d67009763171167387329ba7d2c2e708f72b7ab2f4310b6f5fae969f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028112377"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10714-007-0495-2", 
          "https://app.dimensions.ai/details/publication/pub.1028112377"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56164_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10714-007-0495-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10714-007-0495-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10714-007-0495-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10714-007-0495-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10714-007-0495-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10714-007-0495-2 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author Nea7041e04fb749a7bbaa75fdf7b8d5f1
    4 schema:citation sg:pub.10.1007/bf02097393
    5 sg:pub.10.1007/bf02100867
    6 https://doi.org/10.1016/0003-4916(85)90019-3
    7 https://doi.org/10.1017/cbo9780511524653.023
    8 https://doi.org/10.1063/1.1666050
    9 https://doi.org/10.1063/1.1666377
    10 https://doi.org/10.1088/0264-9381/23/22/006
    11 https://doi.org/10.1088/0264-9381/23/4/002
    12 https://doi.org/10.1088/0264-9381/23/7/002
    13 https://doi.org/10.1088/0264-9381/24/4/001
    14 https://doi.org/10.1088/0264-9381/8/10/015
    15 https://doi.org/10.1103/physrev.160.1113
    16 https://doi.org/10.1103/physrevd.4.955
    17 https://doi.org/10.1103/physrevd.65.124013
    18 https://doi.org/10.1590/s0103-97332005000200016
    19 schema:datePublished 2007-11
    20 schema:datePublishedReg 2007-11-01
    21 schema:description We will pick up the concepts of partial and complete observables introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkhäuser, Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002); Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct Dirac observables in gauge systems. We will generalize these ideas to an arbitrary number of gauge degrees of freedom. Different methods to calculate such Dirac observables are developed. For background independent field theories we will show that partial and complete observables can be related to Kuchař’s Bubble-Time Formalism (J Math Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space of complete observables and also state the Poisson brackets of these functions. Additionally we will investigate, whether it is possible to calculate Dirac observables starting with partially invariant partial observables, for instance functions, which are invariant under the spatial diffeomorphism group.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N230c2340ac414b568fb83800747796e6
    26 Nbe8ccbd175824a72aa9476181d04e95b
    27 sg:journal.1052061
    28 schema:name Partial and complete observables for Hamiltonian constrained systems
    29 schema:pagination 1891-1927
    30 schema:productId N3578b96062dc43a697ced05cfcfb071a
    31 N65c6aff7bc27479d831b06774955655c
    32 N989bbd68ead04f9bab82d4f5969592d3
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028112377
    34 https://doi.org/10.1007/s10714-007-0495-2
    35 schema:sdDatePublished 2019-04-15T09:13
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N89e52dd8b8064effb9d20e22df855eb9
    38 schema:url http://link.springer.com/10.1007%2Fs10714-007-0495-2
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N230c2340ac414b568fb83800747796e6 schema:volumeNumber 39
    43 rdf:type schema:PublicationVolume
    44 N3578b96062dc43a697ced05cfcfb071a schema:name dimensions_id
    45 schema:value pub.1028112377
    46 rdf:type schema:PropertyValue
    47 N65c6aff7bc27479d831b06774955655c schema:name doi
    48 schema:value 10.1007/s10714-007-0495-2
    49 rdf:type schema:PropertyValue
    50 N89e52dd8b8064effb9d20e22df855eb9 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N989bbd68ead04f9bab82d4f5969592d3 schema:name readcube_id
    53 schema:value 85eb9411d67009763171167387329ba7d2c2e708f72b7ab2f4310b6f5fae969f
    54 rdf:type schema:PropertyValue
    55 Nbe8ccbd175824a72aa9476181d04e95b schema:issueNumber 11
    56 rdf:type schema:PublicationIssue
    57 Nea7041e04fb749a7bbaa75fdf7b8d5f1 rdf:first sg:person.015257074653.42
    58 rdf:rest rdf:nil
    59 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Physical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Quantum Physics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1052061 schema:issn 0001-7701
    66 1572-9532
    67 schema:name General Relativity and Gravitation
    68 rdf:type schema:Periodical
    69 sg:person.015257074653.42 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    70 schema:familyName Dittrich
    71 schema:givenName B.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257074653.42
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf02097393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050559889
    75 https://doi.org/10.1007/bf02097393
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf02100867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026627352
    78 https://doi.org/10.1007/bf02100867
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/0003-4916(85)90019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025404203
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1017/cbo9780511524653.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041525329
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1063/1.1666050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744128
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1063/1.1666377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744450
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1088/0264-9381/23/22/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048377517
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1088/0264-9381/23/4/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008513984
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1088/0264-9381/23/7/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000517581
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1088/0264-9381/24/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039814877
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1088/0264-9381/8/10/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347643
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1103/physrev.160.1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435969
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrevd.4.955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060697329
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevd.65.124013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038545956
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1590/s0103-97332005000200016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012828105
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
    107 schema:name MPI f. Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476, Golm near Potsdam, Germany
    108 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...