The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

Rico Fischer, Nikolai Knapp, Friedrich Bohn, Herman H. Shugart, Andreas Huth

ABSTRACT

Forests provide important ecosystem services such as carbon sequestration. Forest landscapes are intrinsically heterogeneous—a problem for biomass and productivity assessment using remote sensing. Forest structure constitutes valuable additional information for the improved estimation of these variables. However, survey of forest structure by remote sensing remains a challenge which results mainly from the differences in forest structure metrics derived by using remote sensing compared to classical structural metrics from field data. To understand these differences, remote sensing measurements were linked with an individual-based forest model. Forest structure was analyzed by lidar remote sensing using metrics for the horizontal and vertical structures. To investigate the role of forest structure for biomass and productivity estimations in temperate forests, 25 lidar metrics of 375,000 simulated forest stands were analyzed. For the lidar-based metrics, top-of-canopy height arose as the best predictor for describing horizontal forest structure. The standard deviation of the vertical foliage profile was the best predictor for the vertical heterogeneity of a forest. Forest structure was also an important factor for the determination of forest biomass and aboveground wood productivity. In particular, horizontal structure was essential for forest biomass estimation. Predicting aboveground wood productivity must take into account both horizontal and vertical structures. In a case study based on these findings, forest structure, biomass and aboveground wood productivity are mapped for whole of Germany. The dominant type of forest in Germany is dense but less vertically structured forest stands. The total biomass of all German forests is 2.3 Gt, and the total aboveground woody productivity is 43 Mt/year. Future remote sensing missions will have the capability to provide information on forest structure (e.g., from lidar or radar). This will lead to more accurate assessments of forest biomass and productivity. These estimations can be used to evaluate forest ecosystems related to climate regulation and biodiversity protection. More... »

PAGES

1-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10712-019-09519-x

DOI

http://dx.doi.org/10.1007/s10712-019-09519-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112519747


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Centre for Environmental Research", 
          "id": "https://www.grid.ac/institutes/grid.7492.8", 
          "name": [
            "Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH \u2013 UFZ, Permoserstasse 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Rico", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Centre for Environmental Research", 
          "id": "https://www.grid.ac/institutes/grid.7492.8", 
          "name": [
            "Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH \u2013 UFZ, Permoserstasse 15, 04318, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knapp", 
        "givenName": "Nikolai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH \u2013 UFZ, Permoserstasse 15, 04318, Leipzig, Germany", 
            "Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bohn", 
        "givenName": "Friedrich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Environmental Sciences, University of Virginia, 22903, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shugart", 
        "givenName": "Herman H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osnabr\u00fcck University", 
          "id": "https://www.grid.ac/institutes/grid.10854.38", 
          "name": [
            "Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH \u2013 UFZ, Permoserstasse 15, 04318, Leipzig, Germany", 
            "German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany", 
            "Institute of Environmental Systems Research, University of Osnabr\u00fcck, Barbarastr. 12, 49076, Osnabr\u00fcck, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huth", 
        "givenName": "Andreas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/rse2.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000405892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/140327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001669013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1127(99)00140-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002050084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2013.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002097246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jg000993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002473594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2014.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002958706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jg001708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006198967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf8957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006504357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-015-0927-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007028261", 
          "https://doi.org/10.1007/s10342-015-0927-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008558677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x09-183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008798237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jg000937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009519117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2007.01323.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010507810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2007.01323.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010507810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(00)00174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2016.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013209172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2010.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014505880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/forestry/75.3.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015442273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016163675", 
          "https://doi.org/10.1007/978-3-540-88307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016163675", 
          "https://doi.org/10.1007/978-3-540-88307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsos.160521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016761120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/10-2192.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016858886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2006.01120.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017242085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jg000933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017317834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018008199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021944538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-016-3623-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023531621", 
          "https://doi.org/10.1007/s00442-016-3623-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2015.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023901930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1019576108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024533264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-7-2531-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024592832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010gl043622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024655998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/02-5317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025004518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1155121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025410075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(00)00210-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026435452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nplants.2016.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028180723", 
          "https://doi.org/10.1038/nplants.2016.24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0587.2012.07361.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029400414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0305-0270.2003.00994.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034837479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0305-0270.2003.00994.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034837479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-013-0765-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036984564", 
          "https://doi.org/10.1007/s10342-013-0765-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1229931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039674574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043560141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02769124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045027573", 
          "https://doi.org/10.1007/bf02769124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17538947.2014.990526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045049964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1201609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047530784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.2000.00155.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049801898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(98)00071-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050364072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2012.01864.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050458679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2486.2001.00426.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056735343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2017.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084774595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2017.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084774595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2017.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084774595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1365-2664.12950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085862763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-017-0550-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090363719", 
          "https://doi.org/10.1007/s10980-017-0550-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-017-0550-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090363719", 
          "https://doi.org/10.1007/s10980-017-0550-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-017-1056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090924793", 
          "https://doi.org/10.1007/s10342-017-1056-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-017-1056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090924793", 
          "https://doi.org/10.1007/s10342-017-1056-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/geb.12639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091880963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2017.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093054509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9121229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093072665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/aaaacc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100671922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.baae.2018.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101296283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/aabc61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103337183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10050731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103940846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.15517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107447725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96229-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111844319", 
          "https://doi.org/10.1007/978-3-319-96229-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-019-09506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111949380", 
          "https://doi.org/10.1007/s10712-019-09506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-019-09506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111949380", 
          "https://doi.org/10.1007/s10712-019-09506-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-04", 
    "datePublishedReg": "2019-03-04", 
    "description": "Forests provide important ecosystem services such as carbon sequestration. Forest landscapes are intrinsically heterogeneous\u2014a problem for biomass and productivity assessment using remote sensing. Forest structure constitutes valuable additional information for the improved estimation of these variables. However, survey of forest structure by remote sensing remains a challenge which results mainly from the differences in forest structure metrics derived by using remote sensing compared to classical structural metrics from field data. To understand these differences, remote sensing measurements were linked with an individual-based forest model. Forest structure was analyzed by lidar remote sensing using metrics for the horizontal and vertical structures. To investigate the role of forest structure for biomass and productivity estimations in temperate forests, 25 lidar metrics of 375,000 simulated forest stands were analyzed. For the lidar-based metrics, top-of-canopy height arose as the best predictor for describing horizontal forest structure. The standard deviation of the vertical foliage profile was the best predictor for the vertical heterogeneity of a forest. Forest structure was also an important factor for the determination of forest biomass and aboveground wood productivity. In particular, horizontal structure was essential for forest biomass estimation. Predicting aboveground wood productivity must take into account both horizontal and vertical structures. In a case study based on these findings, forest structure, biomass and aboveground wood productivity are mapped for whole of Germany. The dominant type of forest in Germany is dense but less vertically structured forest stands. The total biomass of all German forests is 2.3 Gt, and the total aboveground woody productivity is 43 Mt/year. Future remote sensing missions will have the capability to provide information on forest structure (e.g., from lidar or radar). This will lead to more accurate assessments of forest biomass and productivity. These estimations can be used to evaluate forest ecosystems related to climate regulation and biodiversity protection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10712-019-09519-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051934", 
        "issn": [
          "0169-3298", 
          "1573-0956"
        ], 
        "name": "Surveys in Geophysics", 
        "type": "Periodical"
      }
    ], 
    "name": "The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ba0f43b9a0a0c7d876bfb93beb1dab6942bff463ad9bcf2f99b9eb5ea15ca27"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10712-019-09519-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112519747"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10712-019-09519-x", 
      "https://app.dimensions.ai/details/publication/pub.1112519747"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60354_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10712-019-09519-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10712-019-09519-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10712-019-09519-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10712-019-09519-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10712-019-09519-x'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      21 PREDICATES      84 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10712-019-09519-x schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Nc54847a6578649a38dbd054b6641d8e8
4 schema:citation sg:pub.10.1007/978-3-319-96229-0_11
5 sg:pub.10.1007/978-3-540-88307-4
6 sg:pub.10.1007/bf02769124
7 sg:pub.10.1007/s00442-016-3623-4
8 sg:pub.10.1007/s10342-013-0765-3
9 sg:pub.10.1007/s10342-015-0927-6
10 sg:pub.10.1007/s10342-017-1056-1
11 sg:pub.10.1007/s10712-019-09506-2
12 sg:pub.10.1007/s10980-017-0550-7
13 sg:pub.10.1038/nplants.2016.24
14 https://doi.org/10.1002/rse2.15
15 https://doi.org/10.1016/j.baae.2018.02.007
16 https://doi.org/10.1016/j.ecolmodel.2014.01.021
17 https://doi.org/10.1016/j.ecolmodel.2015.11.018
18 https://doi.org/10.1016/j.foreco.2016.04.043
19 https://doi.org/10.1016/j.foreco.2017.04.003
20 https://doi.org/10.1016/j.rse.2010.10.008
21 https://doi.org/10.1016/j.rse.2013.09.023
22 https://doi.org/10.1016/j.rse.2015.01.020
23 https://doi.org/10.1016/j.rse.2016.05.028
24 https://doi.org/10.1016/j.rse.2017.11.018
25 https://doi.org/10.1016/s0034-4257(00)00174-7
26 https://doi.org/10.1016/s0034-4257(00)00210-8
27 https://doi.org/10.1016/s0034-4257(98)00071-6
28 https://doi.org/10.1016/s0378-1127(99)00140-1
29 https://doi.org/10.1029/2009jg000933
30 https://doi.org/10.1029/2009jg000937
31 https://doi.org/10.1029/2009jg000993
32 https://doi.org/10.1029/2010gl043622
33 https://doi.org/10.1029/2011jg001708
34 https://doi.org/10.1046/j.0305-0270.2003.00994.x
35 https://doi.org/10.1046/j.1365-2486.2001.00426.x
36 https://doi.org/10.1046/j.1365-2699.2000.00155.x
37 https://doi.org/10.1073/pnas.1019576108
38 https://doi.org/10.1080/17538947.2014.990526
39 https://doi.org/10.1088/1748-9326/aaaacc
40 https://doi.org/10.1088/1748-9326/aabc61
41 https://doi.org/10.1093/forestry/75.3.305
42 https://doi.org/10.1098/rsos.160521
43 https://doi.org/10.1111/1365-2664.12950
44 https://doi.org/10.1111/gcb.12600
45 https://doi.org/10.1111/geb.12639
46 https://doi.org/10.1111/j.1365-2486.2006.01120.x
47 https://doi.org/10.1111/j.1365-2486.2007.01323.x
48 https://doi.org/10.1111/j.1461-0248.2012.01864.x
49 https://doi.org/10.1111/j.1600-0587.2012.07361.x
50 https://doi.org/10.1111/nph.15517
51 https://doi.org/10.1126/science.1111772
52 https://doi.org/10.1126/science.1155121
53 https://doi.org/10.1126/science.1201609
54 https://doi.org/10.1126/science.1229931
55 https://doi.org/10.1126/science.1244693
56 https://doi.org/10.1126/science.aaf8957
57 https://doi.org/10.1139/x09-183
58 https://doi.org/10.1890/02-5317
59 https://doi.org/10.1890/10-2192.1
60 https://doi.org/10.1890/140327
61 https://doi.org/10.3390/rs10050731
62 https://doi.org/10.3390/rs9121229
63 https://doi.org/10.5194/bg-7-2531-2010
64 schema:datePublished 2019-03-04
65 schema:datePublishedReg 2019-03-04
66 schema:description Forests provide important ecosystem services such as carbon sequestration. Forest landscapes are intrinsically heterogeneous—a problem for biomass and productivity assessment using remote sensing. Forest structure constitutes valuable additional information for the improved estimation of these variables. However, survey of forest structure by remote sensing remains a challenge which results mainly from the differences in forest structure metrics derived by using remote sensing compared to classical structural metrics from field data. To understand these differences, remote sensing measurements were linked with an individual-based forest model. Forest structure was analyzed by lidar remote sensing using metrics for the horizontal and vertical structures. To investigate the role of forest structure for biomass and productivity estimations in temperate forests, 25 lidar metrics of 375,000 simulated forest stands were analyzed. For the lidar-based metrics, top-of-canopy height arose as the best predictor for describing horizontal forest structure. The standard deviation of the vertical foliage profile was the best predictor for the vertical heterogeneity of a forest. Forest structure was also an important factor for the determination of forest biomass and aboveground wood productivity. In particular, horizontal structure was essential for forest biomass estimation. Predicting aboveground wood productivity must take into account both horizontal and vertical structures. In a case study based on these findings, forest structure, biomass and aboveground wood productivity are mapped for whole of Germany. The dominant type of forest in Germany is dense but less vertically structured forest stands. The total biomass of all German forests is 2.3 Gt, and the total aboveground woody productivity is 43 Mt/year. Future remote sensing missions will have the capability to provide information on forest structure (e.g., from lidar or radar). This will lead to more accurate assessments of forest biomass and productivity. These estimations can be used to evaluate forest ecosystems related to climate regulation and biodiversity protection.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree false
70 schema:isPartOf sg:journal.1051934
71 schema:name The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing
72 schema:pagination 1-26
73 schema:productId N10fb420320d646bda3bbd157271b5bcc
74 N51e98edebb2d456780f15ddec37c09ed
75 Nf77f83bb1a29444384859c1a5e851878
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112519747
77 https://doi.org/10.1007/s10712-019-09519-x
78 schema:sdDatePublished 2019-04-11T11:03
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Ncccc0453e0ee46cc947ee81d74771710
81 schema:url https://link.springer.com/10.1007%2Fs10712-019-09519-x
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N0c50a0ee88ee4bf3a02a17a8d5442ba0 rdf:first N6838f1acd8cc4c13902f52cb5be48610
86 rdf:rest rdf:nil
87 N10fb420320d646bda3bbd157271b5bcc schema:name doi
88 schema:value 10.1007/s10712-019-09519-x
89 rdf:type schema:PropertyValue
90 N1254550845b84357b1765422d682a0f5 schema:affiliation https://www.grid.ac/institutes/grid.7492.8
91 schema:familyName Knapp
92 schema:givenName Nikolai
93 rdf:type schema:Person
94 N438cfc441eec4c13b5fd5fce292bd546 rdf:first N1254550845b84357b1765422d682a0f5
95 rdf:rest N79037b24278d4feeb37d03f3a89cb59e
96 N51e98edebb2d456780f15ddec37c09ed schema:name readcube_id
97 schema:value 8ba0f43b9a0a0c7d876bfb93beb1dab6942bff463ad9bcf2f99b9eb5ea15ca27
98 rdf:type schema:PropertyValue
99 N6838f1acd8cc4c13902f52cb5be48610 schema:affiliation https://www.grid.ac/institutes/grid.10854.38
100 schema:familyName Huth
101 schema:givenName Andreas
102 rdf:type schema:Person
103 N7098f2166dbc4aa4a56c076525c13d00 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
104 schema:familyName Bohn
105 schema:givenName Friedrich
106 rdf:type schema:Person
107 N79037b24278d4feeb37d03f3a89cb59e rdf:first N7098f2166dbc4aa4a56c076525c13d00
108 rdf:rest Nbb07c18b50794078b03deaf907c13544
109 N8f1234a7b9e24bdfa5d2d15aad21ba4f schema:affiliation https://www.grid.ac/institutes/grid.27755.32
110 schema:familyName Shugart
111 schema:givenName Herman H.
112 rdf:type schema:Person
113 Nbb07c18b50794078b03deaf907c13544 rdf:first N8f1234a7b9e24bdfa5d2d15aad21ba4f
114 rdf:rest N0c50a0ee88ee4bf3a02a17a8d5442ba0
115 Nc54847a6578649a38dbd054b6641d8e8 rdf:first Nf44450b7ac8742aa9c50ce548a63d75f
116 rdf:rest N438cfc441eec4c13b5fd5fce292bd546
117 Ncccc0453e0ee46cc947ee81d74771710 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Nf44450b7ac8742aa9c50ce548a63d75f schema:affiliation https://www.grid.ac/institutes/grid.7492.8
120 schema:familyName Fischer
121 schema:givenName Rico
122 rdf:type schema:Person
123 Nf77f83bb1a29444384859c1a5e851878 schema:name dimensions_id
124 schema:value pub.1112519747
125 rdf:type schema:PropertyValue
126 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
127 schema:name Agricultural and Veterinary Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
130 schema:name Forestry Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1051934 schema:issn 0169-3298
133 1573-0956
134 schema:name Surveys in Geophysics
135 rdf:type schema:Periodical
136 sg:pub.10.1007/978-3-319-96229-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111844319
137 https://doi.org/10.1007/978-3-319-96229-0_11
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-540-88307-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016163675
140 https://doi.org/10.1007/978-3-540-88307-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf02769124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045027573
143 https://doi.org/10.1007/bf02769124
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00442-016-3623-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023531621
146 https://doi.org/10.1007/s00442-016-3623-4
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10342-013-0765-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036984564
149 https://doi.org/10.1007/s10342-013-0765-3
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10342-015-0927-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007028261
152 https://doi.org/10.1007/s10342-015-0927-6
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10342-017-1056-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090924793
155 https://doi.org/10.1007/s10342-017-1056-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10712-019-09506-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949380
158 https://doi.org/10.1007/s10712-019-09506-2
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10980-017-0550-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090363719
161 https://doi.org/10.1007/s10980-017-0550-7
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nplants.2016.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028180723
164 https://doi.org/10.1038/nplants.2016.24
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/rse2.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000405892
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.baae.2018.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101296283
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ecolmodel.2014.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958706
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ecolmodel.2015.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901930
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.foreco.2016.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013209172
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.foreco.2017.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084774595
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.rse.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014505880
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.rse.2013.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002097246
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.rse.2015.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021944538
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.rse.2016.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018008199
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.rse.2017.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093054509
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0034-4257(00)00174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012604374
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0034-4257(00)00210-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026435452
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0034-4257(98)00071-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050364072
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0378-1127(99)00140-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002050084
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1029/2009jg000933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017317834
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1029/2009jg000937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009519117
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1029/2009jg000993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002473594
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1029/2010gl043622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024655998
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1029/2011jg001708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006198967
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1046/j.0305-0270.2003.00994.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034837479
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1046/j.1365-2486.2001.00426.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056735343
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1046/j.1365-2699.2000.00155.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049801898
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.1019576108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024533264
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/17538947.2014.990526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045049964
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/1748-9326/aaaacc schema:sameAs https://app.dimensions.ai/details/publication/pub.1100671922
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1088/1748-9326/aabc61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103337183
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/forestry/75.3.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015442273
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1098/rsos.160521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016761120
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/1365-2664.12950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085862763
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/gcb.12600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008558677
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/geb.12639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091880963
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1111/j.1365-2486.2006.01120.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017242085
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1111/j.1365-2486.2007.01323.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010507810
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1111/j.1461-0248.2012.01864.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050458679
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1111/j.1600-0587.2012.07361.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029400414
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/nph.15517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107447725
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.1111772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385493
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1155121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025410075
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1201609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047530784
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1229931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039674574
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1244693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043560141
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.aaf8957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006504357
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1139/x09-183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008798237
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1890/02-5317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025004518
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1890/10-2192.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016858886
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1890/140327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669013
259 rdf:type schema:CreativeWork
260 https://doi.org/10.3390/rs10050731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103940846
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3390/rs9121229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093072665
263 rdf:type schema:CreativeWork
264 https://doi.org/10.5194/bg-7-2531-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024592832
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.10854.38 schema:alternateName Osnabrück University
267 schema:name Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstasse 15, 04318, Leipzig, Germany
268 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
269 Institute of Environmental Systems Research, University of Osnabrück, Barbarastr. 12, 49076, Osnabrück, Germany
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
272 schema:name Department of Environmental Sciences, University of Virginia, 22903, Charlottesville, VA, USA
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.7492.8 schema:alternateName Helmholtz Centre for Environmental Research
275 schema:name Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstasse 15, 04318, Leipzig, Germany
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
278 schema:name Department of Ecological Modeling, Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstasse 15, 04318, Leipzig, Germany
279 Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...